

System z
Application Programming Interfaces

SB10-7030-16

Note:
Before using this information and the product it supports, read the information in
[page v ||Appendix G, “Notices,” on page 235)and IBM Systems Environmental Notices and User
Guide, Z125-5823.

This edition, SB10-7030-16, applies to the IBM System z servers. This edition replaces SB10-7030-15.

There might be a newer version of this document in a PDF file available on Resource Link. Go to
http://www.ibm.com/servers/resourcelink and click Library on the navigation bar. A newer version is indicated by a
lowercase, alphabetic letter following the form number suffix (for example: 00a, 00b, 0la, 01b).

© Copyright IBM Corporation 2000, 2013.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Safety
Safety notices . .
World trade safety mformatron .
Laser safety information
Laser compliance .

About this publication .

Message event notification

Load command support . .

Hardware message refresh command support
Hardware message event data .

Activation profile support . .
Hardware message delete command support .
Reset clear command support .

Security log event support .

Processing weight support

Activate CBU command support
Import/Export profiles support .

External interrupt command support .
Reserve command support

Alert event support . .

Object name added to event data .

Degrade indicator enhancements

Partition identifier .

SCSI load /dump support .

Event qualification . .
Shutdown/Restart command support

On/Off Capacity on Demand (On/Off CoD) support

Integrated Facility for Applications and Integrated
Information Processors weight support

Processor running time support .

Group profile support . . .
Additional image activation profile attrrbutes .
HwmcaGetBulk API

SNMP over TCP support .

Version support . .

Engineering Change (EC)/ Mrcrocode Level (MCL)
support . .
Internet Protocol (IP) addresses support

z/VM IML/partition activation mode

Disabled wait event support.

No command response event support

Temporary capacity support.

IPv6 support.

Additional data added to HWMCA EVENT DATA

event . . .
Integrated Fac111ty for Apphcatlons (IFA) are
Application Assist Processor (AAP) in newer
consoles . .

Additional image actlvatlon proflle attrlbutes

IPL Token attribute for CPC Image object .

Server Time Protocol (STP) configuration support
Additional temporary capacity support .
Additional image activation profile attributes.
Group Profile capacity support

© Copyright IBM Corp. 2000, 2013

.xi
. Xi
. xi

< < < <<

. vii

. Vil
. Viil
. viii
. viii
. viii
. Viil
. viii
. viii

X

. Xii

. Xii
. Xii
. Xxii
. Xxii
. Xii
. Xii

. Xiii

. xiil

. xiil
. xiil
. xiil

xiii

. Xiv
. Xiv
. Xiv

Alternate subchannel IPL
Absolute capping .

Revisions .

Accessibility . .
How to send your comments .

Chapter 1. APIs objectives.
Chapter 2. Overview

Chapter 3. Console appllcatlon APls
Management APIs

Data exchange APIs .

Commands APT .
Command arguments .

Data exchange APIs and commands API structures
.42
. 43

and definitions . .
Constant definitions
Data exchange APIs SNMP target structure
(HWMCA_SNMP_TARGET_T) .
Data exchange APIs initialize structure
(HWMCA_INITIALIZE_T)
Data exchange APIs datatype structure
(HWMCA_DATATYPE_T)
Function prototypes .

Data exchange APIs and commands API example

Chapter 4. Console application
managed objects e e
Console application object identifier conventions .
prefix
attribute
group
object .
Console application ob]ect
Console application name blndmgs
Console attributes . .
Console application commands
Console application notifications
Group .
Group name bmdlngs
Group attributes.
Group commands
Group notifications .
Defined CPC .
Defined CPC name bmdmgs
Defined CPC attributes
Defined CPC relationships
Defined CPC commands .
Defined CPC notifications
CPC image .
CPC image name blndlngs
CPC image attributes .
CPC image relationships

. Xiv
. Xiv
. Xiv
. Xiv
. Xiv

a

= Q1 U

. 57
. 58

. 59
. 59
. 62

. 75
.75
.75
.76
.76
. 76
.77
.77
.77
.78
. 78
.79
.79
.79
. 80
.81
.81
. 81
. 81
.90
.90
.91
.92
.92
.. 92
. 106

iii

CPC image commands
CPC image notifications .

Coupling facility . .
Coupling facility name b1nd1ngs .
Coupling facility attributes .

Coupling facility relationships .
Coupling facility commands
Coupling facility notifications .

Reset activation profile object . .
Reset activation profile name bindings .
Reset activation profile attributes .

Image activation profile object. .
Image activation profile name bindings.
Image activation profile attributes

Load activation profile object . .o
Load activation profile name bindings .
Load activation profile attributes .

Group profile object . .

Group profile name bindings .
Group profile attributes .

Capacity record object
Capacity record name bindings
Capacity record attributes .

z/VM virtual machine object . .
Z/VM virtual machine name bindings .
z/VM virtual machine attributes .
z/VM virtual machine commands
z/VM virtual machine notifications .

Chapter 5. REXX management

functions .

ACTZSNMP. . .
REXX initialization funct1ons .
Data exchange functions.
Commands API .

Data exchange APIs (REXX sample)

Chapter 6. Configuring for the data
exchange APls. .
Configuring for SNMP (for Consoles earher than
version 2.9.0)

Configuring the console for API (for consoles
earlier than version 2.9.0)

iv Application Programming Interfaces

. 106
. 107
. 108
. 108
. 108
. 115
. 115
. 115
. 116
. 116
. 117
. 118
. 118
. 118
. 135
. 135
. 136
. 137
. 137
. 137
. 138
. 138
. 138
. 140
. 140
. 140
. 141
. 142

. 143
. 143
. 143
. 143
. 156
. 167

. 191
. 191

. 192

Configuration problems 193
Configuring the console for API (for consoles
version 29.0 or later).193

Appendix A. Building an application 195
Hardware Management Console (prior to version
290019

Appendix B.
HWMCA_EVENT_COMMAND_RESPONSE
returncodes. 199

Appendix C. APl return codes 203

Data exchange API call return codes. 203
Command API call return codes 206
HWMCA_EVENT_COMMAND_RESPONSE return
codes 208
Data exchange and command APl (REXX Vers1on)
return codes.212

Appendix D. APIs for Java
(com.ibm.hwmeca.api) 213

Appendix E. Object Attribute
Availability215

Appendix F. XML descriptions 219

Add capacity command219
Remove capacity command.219
Capacity record query . . . 220
Engineering Change (EC)/ M1crocode Level (MCL)

query . . L. L0222
STP conﬁguratlon 1nformat1on L.223
XML schema223

Appendix G. Notices 235
Trademarks236
Electronic emission notices 236

Glossary24

Safety

Safety notices

Safety notices may be printed throughout this guide. DANGER notices warn you of conditions or
procedures that can result in death or severe personal injury. CAUTION notices warn you of conditions
or procedures that can cause personal injury that is neither lethal nor extremely hazardous. Attention
notices warn you of conditions or procedures that can cause damage to machines, equipment, or
programs.

There are no DANGER notices in this guide.

World trade safety information

Several countries require the safety information contained in product publications to be presented in their
translation. If this requirement applies to your country, a safety information booklet is included in the
publications package shipped with the product. The booklet contains the translated safety information
with references to the US English source. Before using a US English publication to install, operate, or
service this IBM® product, you must first become familiar with the related safety information in the
Systems Safety Notices, G229-9054. You should also refer to the booklet any time you do not clearly
understand any safety information in the US English publications.

Laser safety information

All System z® models can use I/O cards such as FICON®, Open Systems Adapter (OSA), InterSystem
Channel-3 (ISC-3), or other I/O features which are fiber optic based and utilize lasers (short wavelength
or long wavelength lasers).

Laser compliance

All lasers are certified in the US to conform to the requirements of DHHS 21 CFR Subchapter | for Class
1 or Class 1M laser products. Outside the US, they are certified to be in compliance with IEC 60825 as a
Class 1 or Class 1M laser product. Consult the label on each part for laser certification numbers and
approval information.

CAUTION: Data processing environments can contain equipment transmitting on system links with
laser modules that operate at greater than Class 1 power levels. For this reason, never look into the

end of an optical fiber cable or open receptacle. (C027)

CAUTION: This product contains a Class 1M laser. Do not view directly with optical instruments.
(C028)

© Copyright IBM Corp. 2000, 2013 \%

vi Application Programming Interfaces

About this publication

This document is intended to assist system management independent software vendors, customers, and
system programmers in developing system management applications that provide integrated hardware

and software system management solutions using the Console programming interfaces. A knowledge of
the console and the C and/or Rexx language is recommended.

Note: Throughout this book, the term “Console” refers to the Hardware Management Console or the
Support Element.

The Console is a direct-manipulation object-oriented graphical user interface that provides single point of
control and single-system image for hardware elements. The Console provides the customer grouping
support, aggregated and individual real-time system status by colors, consolidated hardware messages
support, consolidated operating system messages support, consolidated service support, and hardware
commands targeted at a single system, multiple systems, or a customer group of systems. Also, the
Console is exception based through customizable acceptable statuses per object. The objects the Console
currently manages are:

* Central Processing Complexes (CPCs)

+ Central Processing Complex Processor Resource/Systems Manager (PR/SM") partitions and/or
native mode images (CPC Images)

¢ Central Processing Complex Coupling Facilities (Coupling Facility CPC Images)

* Customer defined groups of Central Processing Complexes, PR/SM partitions, native mode images,
and/or Coupling Facilities.

In addition to providing an end user with the ability to view and manipulate managed objects, the
Console also provides management application programming interfaces (APIs). The management APIs
provide the ability to get/set the attributes of a Console managed object, issue commands to be
performed on a managed object from a local or remote application, receive asynchronous notifications,
and generate Simple Network Management Protocol enterprise-specific traps.

In the following pages, the Console programming interfaces are detailed. The four areas to be covered
are:

* Console APIs objectives
e Overview of the Console APIs architecture
* Console APIs definition, data structures, and usage

* Console managed object definitions and identifications.

Figures included in this document illustrate concepts and are not necessarily accurate in content,
appearance, or specific behavior.

Message event notification

[“HwmcaWaitEvent” on page 13| describes the capabilities available for the receipt of asynchronous
message event notifications. While message event notifications are provided by all levels of Consoles, not
all Consoles provide the capabilities for:

* Registering for only hardware or operating system message event notifications,

* Registering for only nonrefresh message event notifications

These capabilities are available in Consoles for:
* 9674 Coupling Facility EC D98085 or later, and

© Copyright IBM Corp. 2000, 2013 vii

* 9672 Parallel Enterprise Server EC E12867 or later.

Load command support

[“Commands API” on page 21| describes how to use the Commands API to perform a Load. The
HWMCA_LOAD_COMMAND is available in Hardware Management Consoles with EC level E45976 or
later and available on all standalone Support Elements that support APIs.

Hardware message refresh command support

[“Commands API” on page 21| describes how to use the Commands API to request refresh events for
existing hardware messages to be sent to registered applications. This command is available on all
Consoles version 1.4.0 or later. (To locate the version level installed on your console, look at the title bar
on the workplace window.)

Hardware message event data

[“HwmcaWaitEvent” on page 13| describes the data provided in a hardware
HWMCA_EVENT_MESSAGES event. While this event is available from all levels of Consoles, only
Consoles version 1.4.0 or later include the following data in these types of events. (To locate the version
level installed on your console, look at the title bar on the workplace window.)

* Time stamp of the hardware message,
* List of CPC Images associated with the hardware object generating the hardware message.

Activation profile support

“Reset activation profile object” on page 116|[“Image activation profile object” on page 118|and |[“Load|
activation profile object” on page 135 describe the Reset Activation Profile, Image Activation Profile, and Load
Activation Profile managed objects. The support for these managed objects is available only on Consoles
version 1.4.4 or later. (To locate the version level installed on your console, look at the title bar on the
workplace window.)

Hardware message delete command support

[“Commands API” on page 21| describes how to use the Commands API to request the deletion of existing
hardware messages. This command is available on all Consoles version 1.5.0 or later. (To locate the
version level installed on your console, look at the title bar on the workplace window:.)

Reset clear command support

[“Commands API” on page 21| describes how to use the Commands API to perform a Reset clear of a CPC
Image object. This command is available on all Consoles version 1.5.0 or later. To locate the version level
installed on your console, look at the title bar on the workplace window.)

Security log event support

[“"HWMCA_EVENT_SECURITY_EVENT” on page 1§ describes the data provided in a
HWMCA_EVENT_SECURITY_EVENT event. This event is issued only from Hardware Management
Consoles at Version 1.8.2 or later. (To locate the version level installed on your console, look at the title
bar on the workplace window.)

viii Application Programming Interfaces

Processing weight support

Support for the processing weight value and processing weight capped attributes was added to the CPC
Image, Coupling Facility and Image Activation Profile objects on all Consoles version 1.5.1 or later. (To
locate the version level installed on your console, look at the title bar on the workplace window.)

Activate CBU command support

[“Commands API” on page 21|describes how to use the Command API to perform a real or test Capacity
Backup Upgrade (CBU) activation. This command is available on all Consoles version 1.6.2 or later. (To
locate the version level installed on your console, look at the title bar on the workplace window.) For
additional information about the Activate CBU command, see Capacity on Demand User’s Guide (available
only on the Resource Link® web site).

Import/Export profiles support

[“Commands API” on page 21| describes how to use the Commands API to import or export profiles. This
command is available on all Consoles version 1.6.2 or later. (To locate the version level installed on your
console, look at the title bar on the workplace window.)

External interrupt command support

[“Commands API” on page 21| describes how to use the Commands API to perform an external interrupt
for a CPC Image object. This command is available on all Consoles Version 1.7.0 or later. (To locate the
version level installed on your console, look at the title bar on the workplace window.)

Reserve command support

[“Commands API” on page 21|describes how to use the Commands API to reserve exclusive control of a
CPC object. This command is available only on Support Element Consoles at 1.7.0 or later. (To locate the
version level installed on your console, look at the title bar on the workplace window.)

Alert event support

Support for issuing the HWMCA_EVENT_ALERT has been removed. The Support Element Console no
longer issues this event.

Object name added to event data

["HwmcaWaitEvent” on page 13| describes the data provided in the various events generated by the
Console. While these events have been available for quite some time, additional information is now
provided in all events except for the HWMCA_EVENT_NAME_CHANGE event from Consoles version
1.7.3 or later. This new event data consists of the name of the object the event pertains to.

Degrade indicator enhancements

The Degrade Indicator attribute of the Defined CPC object has been enhanced to have some additional
values, which are used to identify additional degraded conditions. These additional values could be
returned for this attribute from Consoles version 1.8.0 or later.

Partition identifier

Support for the partition identifier attributes was added to the CPC Image and Coupling Facility objects
on all Support Element Consoles version 1.8.0 or later. (To locate the version level installed on your
console, look at the title bar on the workplace window.)

About this publication ix

SCSI load/dump support

[“Commands API” on page 21| describes how to use the Commands API to perform a SCSI (Small
Computer System Interface) Load and SCSI Dump for a CPC Image object. This command is available on
all Consoles Version 1.8.0 or later. (To locate the version level installed on your console, look at the title
bar on the workplace window.)

Event qualification

[“HwmcaWaitEvent” on page 13| describes the capabilities available for the receipt of asynchronous
message event notifications. While message event notifications are provided by all levels of Consoles, not
all Consoles provide the capabilities for providing additional qualification information when registering
to receive events. These capabilities are available in Consoles Version 1.8.0 or later. (To locate the version
level installed on your console, look at the title bar on the workplace window.)

Shutdown/Restart command support

[“Commands API” on page 21|describes how to use the Commands API to shutdown/restart the Console.
This command is available only on Consoles at Version 2.9.0 or later. (To locate the version level installed
on your console, look at the title bar on the workplace window.)

On/Off Capacity on Demand (On/Off CoD) support

Consoles at Version 2.9.1 or later provide the ability to activate, undo, or query information about a
On/Off CoD record for a Defined CPC. (To locate the version level installed on your console, look at the
title bar on the workplace window.) [“Commands API” on page 21| describes how to use the Commands
API to perform an Activation or Undo of an On/Off CoD record for a Defined CPC, while
[CPC” on page 81|describes the On/Off CoD related attributes for the Defined CPC object.

Important planning information for On/Off CoD API activation can be found in Capacity on Demand
User’s Guide (available only on the Resource Link web site).

Integrated Facility for Applications and Integrated Information
Processors weight support

Support for the processing weight value and processing weight capped attributes for Integrated Facility
for Applications (IFA) processors was added to the CPC Image and Image Activation Profile objects on all
Consoles version 2.9.0 or later. Support for the processing weight value and processing weight capped
attributes for IBM System z9® Integrated Information Processors (zIIP) was added to the CPC Image and
Image Activation Profile objects on all Consoles version 2.9.1 or later. (To locate the version level installed
on your console, look at the title bar on the workplace window.)

Processor running time support

Support for the processor running attributes was added to the Defined CPC and Reset Activation Profile
objects on all Consoles version 2.9.1 or later. (To locate the version level installed on your console, look at
the title bar on the workplace window.)

Group profile support

Group Profile Object, in [Chapter 4, “Console application managed objects,” on page 75) describes the new
support for the Group Profile managed object. An additional attribute used to determine the list of Group
Profile objects has also been added to the Defined CPC object as well. This support is available only on
Consoles version 2.9.2 or later. (To locate the version level installed on your console, look at the title bar
on the workplace window.)

X Application Programming Interfaces

Additional image activation profile attributes

Support for the following attributes was added to the Image Activation Profile objects on all Consoles
version 2.9.2 or later:

* Load at activation

* Central storage

* Reserved central storage

* Expanded storage

* Reserved expanded storage

* Number of dedicated general-purpose processors

* Number of reserved dedicated general-purpose processors

* Number of dedicated Integrated Facility for Applications (IFA) processors

* Number of reserved dedicated Integrated Facility for Applications (IFA) processors
* Number of dedicated Integrated Facility for Linux (IFL) processors

* Number of reserved dedicated Integrated Facility for Linux (IFL) processors

¢ Number of dedicated Internal Coupling Facility (ICF) processors

* Number of reserved dedicated Internal Coupling Facility (ICF) processors

¢ Number of dedicated Integrated Information Processors (zIIP) processors

* Number of reserved dedicated Integrated Information Processors (zIIP) processors
* Number of shared general-purpose processors

* Number of reserved shared general-purpose processors

* Number of shared Integrated Facility for Applications (IFA) processors

* Number of reserved shared Integrated Facility for Applications (IFA) processors
* Number of shared Integrated Facility for Linux (IFL) processors

* Number of reserved shared Integrated Facility for Linux (IFL) processors

* Number of shared Internal Coupling Facility (ICF) processors

* Number of reserved shared Internal Coupling Facility (ICF) processors

* Number of shared Integrated Information Processors (zIIP) processors

* Number of reserved shared Integrated Information Processors (zIIP) processors

HwmcaGetBulk API

["HwmcaGetBulk” on page 11| describes the new HwmcaGetBulk application programming interface. This
new API allows the application program to use the SNMP GetBulk request, which provides a mechanism
for getting multiple attributes with a single request. While this API is being introduced with version 2.9.2,
most earlier versions of Consoles already support this new request. (To locate the version level installed
on your console, look at the title bar on the workplace window.)

SNMP over TCP support

Prior to version 2.9.2, the Data Exchange APIs exclusively used the User Datagram Protocol (UDP) of
TCP/IP for the sending of SNMP requests and the receiving of SNMP responses. Consoles version 2.9.2
or later now have support for flowing SNMP requests/responses using the Transmission Control Protocol
(TCP) of TCP/IP. Since TCP guarantees reliable delivery, the Data Exchange APIs will automatically
attempt to use the TCP protocol first and then fall back to UDP if it is unavailable. Support for using TCP
for SNMP is also being made available for earlier Console versions as well. Contact your IBM support
representative for details on what microcode levels are needed for this support. (To locate the version
level installed on your console, look at the title bar on the workplace window.)

About this publication xi

Version support

Support for a new version attribute has been added to the Defined CPC and Console Application objects
on all Consoles version 2.10.0 or later. (To locate the version level installed on your console, look at the
title bar on the workplace window.)

Engineering Change (EC)/Microcode Level (MCL) support

Support for a new attribute that describes the Engineering Change and Microcode levels has been added
to the Defined CPC and Console Application objects on all Consoles version 2.10.0 or later. (To locate the
version level installed on your console, look at the title bar on the workplace window.)

Internet Protocol (IP) addresses support

Support for a new attribute that describes all of the internal protocol (IP) addresses being used has been
added to the Defined CPC and Console Application objects on all Consoles version 2.10.0 or later. (To
locate the version level installed on your console, look at the title bar on the workplace window.)

z/VM IML/partition activation mode

The IML/Partition Activation mode attribute for CPC Image object supports a new value for when a CPC
Image is activated is this newly supported mode. This support is available only on all Consoles version
2.10.0 or later. (To locate the version level installed on your console, look at the title bar on the workplace
window.)

Disabled wait event support

['HWMCA_EVENT_DISABLED_WAIT” on page 19| describes the data provided in the newly supported
HWMCA_EVENT_DISABLED_WAIT event. This event is issued only on Consoles at Version 2.10.0 or
later. (To locate the version level installed on your console, look at the title bar on the workplace
window.)

No command response event support

[“"HwmcaWaitEvent” on page 13| describes the capabilities available for the receipt of asynchronous event
notifications. While command response event notifications are provided by all levels of Consoles, not all
Consoles provide support for the new event mask, HWMCA_EVENT_NO_COMMAND_RESPONSE,
which is used to indicate the registering application does not want to receive
HWMCA_EVENT_COMMAND_RESPONSE events. This new capability is available in Consoles Version
2.10.0 or later. (To locate the version level installed on your console, look at the title bar on the workplace
window.)

Temporary capacity support

New support in the form of a new object, new attributes, and new events has been added for temporary
capacity support for Defined CPC objects. This support is available only on Consoles version 2.10.0 or
later. (To locate the version level installed on your console, look at the title bar on the workplace
window.)

Capacity Record Object, in [Chapter 4, “Console application managed objects,” on page 75 describes the
new Capacity Record object and the object's associated attributes. Two new commands,
HWMCA_ADD_CAPACITY_COMMAND and HWMCA_REMOVE_CAPACITY_COMMAND are also
provided to allow for the addition and removal of temporary capacity for Defined CPC objects. Lastly,
two new events are defined, HWMCA_EVENT_CAPACITY_CHANGE and

xii Application Programming Interfaces

HWMCA_EVENT_CAPACITY_RECORD_CHANGE, to allow for registered applications to be notified
about temporary capacity changes for Defined CPC objects, as well as changes in Capacity Record
objects.

IPv6 support

Consoles version 2.10.0 or later fully support Internet Protocol Version 6 (IPv6). To take advantage of this
new support, new versions of the build and run-time files are available for platforms that also support
IPve6.

Additional data added to HWMCA_EVENT_DATA event

[“"HWMCA_EVENT_ENDED” on page 17|describes the data provided in this event. Additional
information is now provided in this event on Console version 2.10.0 or later. This new event data consists
of:

e the reason the console was ended,
* the name of the Console application component that caused the Console to end, and
¢ the type of shutdown that caused the Console to end.

Integrated Facility for Applications (IFA) are Application Assist
Processor (AAP) in newer consoles

On Consoles version 2.10.0 or later, Integrated Facility for Applications (IFA) processors are called
Application Assist Processor (AAP) processors.

Additional image activation profile attributes

Support for the following CPU counter and CPU sampling related attributes were added to the Image
Activation Profile objects on all Consoles version 2.10.1 or later:

* Basic CPU counter authorization control

* Problem state CPU counter authorization control

* Crypto activity CPU counter authorization control

* Extended CPU counter authorization control

* Coprocessor group CPU counter authorization control

* Basic CPU sampling authorization control

IPL Token attribute for CPC Image object

Support for the IPL token attribute was added to the CPC Image object on all Consoles version 2.10.1 or
later.

Server Time Protocol (STP) configuration support

Support for a new attribute that describes the STP configuration has been added to the Defined CPC
object on all Consoles version 2.10.1 or later. Also, the following STP commands were added to the
Defined CPC object:

* Swap Current Time Server
* Set STP Configuration

* Change STP-only CTN

* Join STP-only CTN

* Leave STP-only CTN

About this publication xiii

Additional temporary capacity support

Prior to version 2.10.1, only the total number of processors pending activation could be queried via the
Data Exchange APIs. Starting in version 2.10.1, support has been added to be able to query the number of
processors pending activation by type as well.

Additional image activation profile attributes

Support for the following crypto related attributes were added to the Image Activation Profile objects on
all Consoles version 2.10.2 or later:

* Permit DEA key import functions

* Permit AES key import functions

Group Profile capacity support

Support for a new attribute that provides the current capacity value for a group profile has been added
to the Image object on all Consoles version 2.11.0 or later.

Alternate subchannel IPL

Specifying an alternate subchannel IPL address to the Load command is supported on consoles version
2.11.1 or later.

Absolute capping

Absolute capping is supported on consoles version 2.12.1 or later.

Revisions

A technical change to the text is indicated by a vertical line to the left of the change.

Accessibility

This publication is in Adobe Portable Document Format (PDF) and should be compliant with accessibility
standards. If you experience difficulties using this PDF file you can request a web-based format of this
publication. Go to Resource Link at |http://www.ibm.com/servers/resourcelink| and click Feedback from
the navigation bar on the left. In the Comments input area, state your request, the publication title and
number, choose General comment as the category and click Submit. You can also send an email to
reslink@us.ibm.com providing the same information.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

How to send your comments

Your feedback is important in helping to provide the most accurate and high-quality information. Send
your comments by using Resource Link at Ihttp:/ /www.ibm.com/servers/ resourcelinkl Click Feedback
on the navigation bar on the left. You can also send an email to reslink@us.ibm.com. Be sure to include
the name of the book, the form number of the book, the version of the book, if applicable, and the
specific location of the text you are commenting on (for example, a page number, table number, or a
heading).

xiv Application Programming Interfaces

http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink

Chapter 1. APIs objectives

The purpose of the Console application programming interfaces is to provide an open set of interfaces
and a workstation platform for system management application providers. The interfaces provide the
capability to use object-based industry-standard programming interfaces instead of building home-grown
release specific programs for collecting the hardware information needed to provide an integrated
hardware and software system management solution. illustrates the integration of system
management applications using the Console application open programming interfaces to provide a
single-system image (SSI) and a single point of control (SPOC).

SSI/SPOC
of Customers
Hardware
and ISVs
Software
c Customer
g and/or
@) ISVs
» Open API
SSI/SPOC
of Console Application
Hardware

Figure 1. Console APIs Objectives

© Copyright IBM Corp. 2000, 2013

2 Application Programming Interfaces

Chapter 2. Overview

This chapter contains a high-level diagram that illustrates how the Console application accomplishes the
purpose of the application programming interfaces, shown in [Figure 1 on page 1|

shows a high-level architecture and flow of information for the Console application management
programming interfaces. The Console application APIs are implemented using the Simple Network
Management Protocol (SNMP) agent. The objects managed by the Console application described in
[Chapter 4, “Console application managed objects,” on page 75 are stored in the Simple Network
Management Protocol management information base (MIB). For more information about using the
management application programming interfaces, see [‘Management APIs” on page 5)

- Local or Remote

- Issues Requests

ISV / Customer

Application - Receives Respones or
PP catio Asynchronous Notifications

Console - 32-bit C callable interfaces

- Written to Console APIs

APls - REXX callable interfaces

A A

Get, Next, Set, Commands

Responses Console SNMP Agent
Y SNMPTAP.DST Redistoreq | SNMP Subagent
SNMP Host Name UDP Aegllii:triin Handles Console
Agent pAps i Application Application
(DAEMON) Notfior Requests Interface
and Issues Methods
+ Handler Responses
r 1 Socket
SNMP Traps ocKe
SNMP Requests and Responses
MIB |
Console Console
Objects Main

Queue Application

Figure 2. Console Application Data Exchange and Commands APIs

© Copyright IBM Corp. 2000, 2013 3

4 Application Programming Interfaces

Chapter 3. Console application APIs

Management APIs

Data exchange APIs

The purpose of the Data Exchange APIs is to allow other applications, local or remote, the ability to
exchange data related to the objects that the Console application manages. Specifically, this support
allows other applications to request the Console application to:

* Query (Get/Get-Next) the attributes of objects,
* Change (Set) certain attributes of objects,
* Receive notification of significant events occurring to objects, and

¢ Generate enterprise-specific Simple Network Management Protocol traps for significant events
occurring to objects.

The Data Exchange APIs use the Simple Network Management Protocol (SNMP) as the transport
mechanism. The attributes of objects can be queried/changed through the underlying SNMP Set, Get,
Get-Next requests, while event notification is accomplished through the use of the enterprise-specific
SNMP Trap message.

Prior to version 2.9.2, the Data Exchange APIs exclusively used the User Datagram Protocol (UDP) of
TCP/IP for the sending of SNMP requests and the receiving of SNMP responses. Consoles version 2.9.2
or later now have support for flowing SNMP requests/responses using the Transmission Control Protocol
(TCP) of TCP/IP. Since TCP guarantees reliable delivery, the Data Exchange APIs automatically attempt
to use the TCP protocol first and then fall back to UDP if it is unavailable.

The underlying SNMP protocol is encapsulated in several APIs in order to reduce the complexities for the
application programmer. Specifically, the set of Data Exchange APIs consists of:

Hwmcalnitialize
Used to perform some initialization tasks necessary for the remainder of the Data Exchange APIs
set and the Commands APL

HwmcaGet
Used to perform a query or Get request for a specified object or object attribute.

HwmcaGetNext
Used to perform a query-next or Get-next request for an object or object attributes that occurs
next in the lexical sequence of objects managed by the Console application.

HwmcaGetBulk
Used to minimize the number of requests required to retrieve large amounts of object or object
attribute data in a manner similar to what could be obtained with a series of HwmcaGetNext
calls.

HwmcaSet
Used to perform a change or Set request for a specified object or object attribute.

HwmcaWaitEvent
Used to wait for a specified period (or forever) for an event notification from the Console
application.

HwmcaTerminate
Used to perform any cleanup tasks required by any of the other APIs in the set.

© Copyright IBM Corp. 2000, 2013 5

HwmcaBuildld
A convenience routine that can be used to construct an object identifier for any object supported
by the Console application.

HwmcaBuildAttributeld
A convenience routine that can be used to construct an attribute object identifier for any object
supported by the Console applications, based on the object identifier of the object itself.

Note: It is possible that some of these APIs might encounter problems if the Console that they are
targeting has been configured to use the Lockup/Screen saver mode capability. It is recommended that
Consoles used as targets for these APIs not have this feature of OS/2 enabled.

The following pages describe each of these APIs in greater detail.

Hwmcalnitialize

Use this API to perform any initialization tasks required in order for the remainder of the API set to
function correctly. (Refer to [Function prototypes” on page 59 for the C function prototype for this APIL)
The arguments specified for this API are:

pInitialize
A pointer to an HWMCA_INITIALIZE_T structure. This structure defines all the information that
is required for the Console application to perform the initialization request. The fields of the
HWMCA_INITIALIZE_T structure meaningful are:

pTarget
A pointer to data specifying the target Console application for the initialization request.

This is a pointer to an HWMCA_SNMP_TARGET_T structure. The fields of this
structure are:

pHost A pointer to a null terminated string specifying the host name or internet address
for the target Console application.

szCommunity
A null terminated string specifying the community name that is to be used for
the SNMP request made to the target Console application. (Refer to
[“Configuring for the data exchange APIs,” on page 191|for more information
regarding the community name used in SNMP requests.)

ulSecurityVersion
Used to specify the desired authentication method. Use the value
HWMCA_SECURITY_VERSION2 for community name based SNMPv2c
authentication. Use the value HWMCA_SECURITY_VERSIONS3 for username
and password based SNMPv3 authentication.

szUsername
Username to be used for SNMPv3 authentication.

szPassword
Password to be used for SNMPv3 authentication.

ulEventMask
Used to specify the types of event notifications that the application program would like
to be registered for. Any combination of the HWMCA_EVENT_* constants logically
ORed together can be specified. This event mask is used for all events emitted by
Console applications managed objects, such as:
* HWMCA_EVENT_COMMAND_RESPONSE
* HWMCA_EVENT_MESSAGE
* HWMCA_EVENT_STATUS_CHANGE
* HWMCA_EVENT_NAME_CHANGE
* HWMCA_EVENT_ACTIVATE_PROF_CHANGE

6 Application Programming Interfaces

« HWMCA_EVENT_CREATED

* HWMCA_EVENT_DESTROYED

« HWMCA_EVENT_EXCEPTION_STATE

« HWMCA_EVENT_ENDED

* HWMCA_EVENT_HARDWARE_MESSAGE

* HWMCA_EVENT_OPSYS_MESSAGE

* HWMCA_EVENT_NO_REFRESH_MESSAGE

* HWMCA_EVENT_STARTED

« HWMCA_EVENT HARDWARE_MESSAGE_ DELETE
« HWMCA_EVENT SECURITY_EVENT

* HWMCA_EVENT _CAPACITY_CHANGE

* HWMCA_EVENT_CAPACITY_RECORD_ CHANGE
* HWMCA_EVENT_DISABLED_WAIT

These event notifications are sent to all registered applications, independent of whether
an application originated the request.

In addition to specifying the types of events that the application program wants to be
registered for, this field can also be used to specify some additional options for the Data
Exchange APIs. These additional options are:

« HWMCA_DIRECT_INITIALIZE

By default, the Data Exchange APIs and the Commands API use SNMP when
performing the Hwmcalnitialize. This flag can be specified to instruct the
Hwmcalnitialize call to use a proprietary TCP/IP sockets level protocol to perform the
Hwmcalnitialize, rather than using the SNMP protocol. When this flag is specified it is
possible for the Hwmcalnitialize to be successful when using a community name that
has read only address. When this flag is not used it is required that the community
name used for the Hwmcalnitialize call has read/write access.

Note: Specifying this flag is highly recommended when a firewall exists between the
Console and the API application. This is because the socket used for the
Hwmcalnitialize call is also used to send event to the API application. Since this socket
connection targets a specific port on the Console (port 3161), it is very straight forward
to define a rule in the firewall that allows connections to this port on the Console. If
this flag is not specified, the Console attempts to establish a socket connection to a
socket created when the API application called the Hwmcalnitialize routine. Since the
port number for this socket is not fixed, it is very difficult to define a firewall rule to
allow this connection from the Console back to the API application.

* HWMCA_FORCE_CLIENT_PATH

When using the Data Exchange APIs to target a Console with multiple LAN interfaces
(for example, a token ring and ethernet interface), this flag can be used to instruct the
Console to ensure that all Data Exchange APIs and the Commands API use the
targeted internet address when sending and receiving data.

* HWMCA_SNMP_VERSION_2

By default, the Data Exchange APIs and the Commands API use SNMP version 1. By
specifying this flag, the Data Exchange APIs are instructed to used SNMP version 2 as
the underlying protocol. The major reason a Data Exchange APIs application would

specify this, is so that it can receive more detailed error return codes that are provided
by SNMP version 2.

« HWMCA_TOLERATE_LOST_EVENTS

By default, the HwmcaWaitEvent call terminates the connection to the target console if
the API application is unable to process events as fast or faster than the target console
is able to send them. By specifying this event mask flag, the connection will not be
terminated in this case. Instead, events will not be sent to the API application while it
is unable to receive them.

Chapter 3. Console application APIs 7

» HWMCA_QUALIFIER_SPECIFIED

By default event notifications from all Console application managed objects that match
the event masks specified in this field will be sent to the API application. By specifying
this event mask flag, additional qualification information can be provided to further
limit the event notifications that will be sent to the API application. When this event
mask flag is specified, the calling API application should also provide additional
qualification information in the ulReserved field. Refer to the description of the
ulReserved field for details on how this additional qualification information is specified.

* HWMCA_EVENT_NO_COMMAND_RESPONSE

By default, all HWMCA_EVENT_COMMAND_RESPONSE events are sent to each
registered application. This event mask flag can be used to indicate that the registering
application does not want to receive these events.

Note: Care should be used when trying to use the same HWMCA_INITIALIZE T
structure for HwmcaWaitEvent calls in addition to the rest of the APIs in the set. Events
associated with a HWMCA_INITIALIZE_T structure will be queued until retrieved with
the HwmcaWaitEvent or until another API, such as HwmcaGet, is called. Therefore,
making calls, such as HwmcaGet, will cause any queued events to be discarded and lost.

When both HwmcaWaitEvent and other calls need to be made, an application should
perform two Hwmcalnitialize calls using two distinct HWMCA_INITIALIZE T
structures. The application can then use one of the HWMCA_INITIALIZE_T structures
for only HwmcaWaitEvent calls and the other HWMCA_INITIALIZE_T structure for the
other API calls.

ulReserved
This is a reserved field and must be set to zero for the Data Exchange APIs if the
HWMCA_QUALIFIER_SPECIFIED event mask flag is not specified. If the
HWMCA_QUALIFIER_SPECIFIED event mask flag is specified, then this field should
contain a pointer to an HWMCA_EVENT_QUALIFIER_T structure, which is the first of
a linked list of additional event qualification information. The fields of the
HWMCA_EVENT_QUALIFIER_T structures in the list are:

ulEventMask
This field should be set to the event mask flag that is being qualified. Only one
event mask flag should be specified in this field. For example,
HWMCA_EVENT_OPSYS_MESSAGE should be specified when qualifying
operating system message event notifications.

ulType
This field is used to indicate the type of event qualification information being
provided. The following event qualification types are currently supported.

HWMCA_QUALIFIER_TYPE_NAME
This value is used to indicate that the event qualification data is the null
terminated name of the managed object, which is specified in the
type.szName field of this structure. An HWMCA_EVENT_QUALIFIER_T
structure that specifies this event qualification type can be used to limit
event notifications for the specified event mask to those associated with a
managed object with the specified name.

pNext A pointer to the next HWMCA_EVENT_QUALIFIER_T structure. A NULL is
used to indicate that there are no more structures in the linked list.

Once the HWMCA _INITIALIZE_T is used on a successful Hwmcalnitialize, this field
should not be altered in any way.

8 Application Programming Interfaces

The remainder of the HWMCA_INITIALIZE_T structure should be left alone and will be filled in
by the Hwmcalnitialize API. It is important that this structure be left intact and accessible, since it
must be passed as a parameter on each of the remaining Data Exchange APIs and Commands
APL

In addition to using the HWMCA_INITIALIZE_T for any subsequent Data Exchange APIs, it can
also be reused on another Hwmicalnitialize call. The only field that can be changed when doing
this is the ulEventMask field. By changing this value, an application can change the events
notifications that it is registered to receive.

Refer to ["Data exchange APIs initialize structure (HWMCA_INITIALIZE_T)” on page 58|for the C
declaration of this structure.

ulTimeOut
Used to specify the amount of time that the calling application wants to wait for the
Huwmecalnitialize to complete. This value is specified in milliseconds and the value of
HWMCA_INFINITE_WAIT can be used to cause the application to wait forever.

The Hwmcalnitialize API returns an unsigned long integer return code value to the calling application.
This return code lets the calling application know if the initialization request was successfully delivered
and processed by the Hardware Management Console Application. A value of
HWMCA_DE_NO_ERROR indicates successful completion.

Note: Upon successful completion of the Hwmcalnitialize call, the ulEventMask field of the
HWMCA_INITIALIZE_ T can be checked for the HWMCA_SNMP_USING_TCP flag to determine if the
initialized session is using UDP or TCP for the flow of SNMP data.

HwmcaRegister

Use this API to alter the event mask and/or event qualifiers used on a previous Hwmcalnitialize call.
(Refer to [“Function prototypes” on page 59|for the C function prototype for this APL) The arguments
specified for this API are:

pInitialize
A pointer to the HWMCA_INITIALIZE_T structure that was used on the Hwmcalnitialize APL

ulEventMask
Used to specify the new types of event notifications that the application program would like to
be registered for. Any combination of the HWMCA_EVENT_* constants logically ORed together
can be specified.

pQualifiers
If the HWMCA_QUALIFIER_SPECIFIED event mask flag is specified, then this field should
contain a pointer to an HWMCA_EVENT_QUALIFIER_T structure, which is the first of a linked
list of additional event qualification information.

ulTimeout
Used to specify the amount of time that the calling application wants to wait for the
HwmcaRegister to complete. This value is specified in milliseconds and the value of
HWMCA_INFINITE_WAIT can be used to cause the application to wait forever.

The HwmcaRegister API returns an unsigned long integer return code value to the calling application. This
return code lets the calling application know if the register request was successfully delivered and
processed by the Hardware Management Console Application. A value of HWMCA_DE_NO_ERROR
indicates successful completion.

Note: The event mask and event qualifiers specified on the HwmcaRegister call will completely replace
those in effect from the previous HwmcaRegister call.

Chapter 3. Console application APIs 9

HwmcaGet
Used to retrieve or Get the data associated with a specific object attribute. (Refer to ["Function prototypes”]
for the C function prototype for this APL.) The arguments specified for this API are:

pInitialize
A pointer to the HWMCA_INITIALIZE_T structure that was used on the Hwmcalnitialize AP

pszObjectID
A pointer to a null terminated object identifier string for which the data is to be retrieved. Refer
to [Chapter 4, “Console application managed objects,” on page 75| for more information about the
object identifiers that the Console application manages.

pOutput
A pointer to an output buffer for the data of the returned object.

ulLength
The size of the output buffer specified by the pOutput argument.

pulBytesNeeded
A pointer to an unsigned long integer where the number of total bytes needed for this Get
request is returned. If the returned value is greater than that specified in the ulLength argument,
then the call should be made again, with a larger buffer in order to Get all the object data. If the
buffer specified by pOutput is too small, then the retrieved object data should not be used, since it
is incomplete.

ulTimeout
Used to specify the amount of time that the calling application wants to wait for the HwmcaGet to
complete. This value is specified in milliseconds and the value of HWMCA_INFINITE_WAIT can
be used to cause the application to wait forever.

The HwmcaGet API returns an unsigned long integer return code value to the calling application. This
return code lets the calling application know if the retrieve/Get request was successfully delivered and
processed by the Console application. A value of HWMCA_DE_NO_ERROR indicates successful
completion.

Upon successful completion of the HwmcaGet API, the output buffer specified by pOutput is populated
with a series of one or more HWMCA_DATATYPE_T structures along with their associated data. The
fields of the HWMCA_DATATYPE_T structure are:

ucType
Defines the type of data represented by this HWMCA_DATATYPE_T structure. Possible values
are:
HWMCA_TYPE_INTEGER
Represents a signed number value in host byte order.
HWMCA_TYPE_OCTETSTRING
Represents a null terminated string value.
HWMCA_TYPE_NULL
Used to denote that no value is present.
HWMCA_TYPE_IPADDRESS
Represents a 32- bit internet address in host byte order.
ulLength

Used to specify the length of the data represented by this HWMCA_DATATYPE_T structure.
pData A pointer to the actual data that this HWMCA_DATATYPE_T structure represents.

pNext A pointer to the next HWMCA_DATATYPE_T structure. A NULL is used to indicate that there
are no more structures in the linked list.

10 Application Programming Interfaces

Note: The value stored in the pulBytesNeeded field represents the total amount of data returned, while the
ulLength field of each HWMCA_DATATYPE _T structure represents the length of each individual data
element in the series.

HwmcaGetNext

Used to retrieve or Get the data associated with the object attribute that occurs next in the lexical
sequence of objects, based on a specified object identifier. (Refer to [“Function prototypes” on page 59| for
the C function prototype for this APL)

The arguments specified for this API are identical to those specified for the HwmcaGet API with two
subtle differences.

1. The meaning of the pszObjectID argument is used as the base for the Get-Next operation, as opposed
to having its object data retrieved.

2. Two HWMCA_DATATYPE_T structures and their associated data are returned. The first is the object
identifier string for the object whose data is being returned and the second is for the data itself.

HwmcaGetBulk

Used to retrieve or Get data associated with a series of object attributes with a single request. (Refer to
[“Function prototypes” on page 59| for the C function prototype for this APIL) This call can be viewed as
performing a series of HwmcaGetNext calls with a single request. For additional details about the
underlying SNMP GetBulkRequest used by this function refer to Request for Comments (RFC) 3416.

The arguments specified for this API are:

pInitialize
A pointer to the HWMCA_INITIALIZE_T structure that was used on the Hwmcalnitialize APL

pszObjectIDs
A pointer to a linked list of HWMCA_DATATYPE_T structures used to specify the object
identifiers to use for the GetBulk request. Refer to|Chapter 4, “Console application managed|
fobjects,” on page 75| for more information about the object identifiers that the Console application
manages.

nonRepeaters
The number of object identifiers specified in the pszObjectlds argument that are to produce only
one HWMCA_DATATYPE_T structure in the output buffer.

maxRepititions
The maximum number of HWMCA_DATATYPE_T fields to be placed in the output buffer for the
remaining object identifiers specified in the pszObjectIDs argument.

pOutput
A pointer to an output buffer for the data of the returned object.

ulLength
The size of the output buffer specified by the pOutput argument.

pulBytesNeeded
A pointer to an unsigned long integer where the number of total bytes needed for this GetBulk
request is returned. If the returned value is greater than that specified in the ulLength argument,
then the call should be made again, with a larger buffer in order to get the complete set of object
data. If the buffer specified by pOutput is too small, then the retrieved object data should not be
used, since it is incomplete.

ulTimeout
Used to specify the amount of time that the calling application wants to wait for the
HwmcaGetBulk to complete. This value is specified in milliseconds and the value of
HWMCA_INFINITE_WAIT can be used to cause the application to wait forever.

Chapter 3. Console application APIs 11

The HwmcaGetBulk API returns an unsigned long integer return code value to the calling application.
This return code lets the calling application know if the request was successfully delivered and processed
by the Console application. A value of HWMCA_DE_NO_ERROR indicates successful completion. Upon
successful completion of the HwmcaGetBulk API, the output buffer specified by pOutput is populated
with a series of one or more HWMCA_DATATYPE_T structures along with their associated data. The
fields of the HWMCA_DATATYPE_T structure are:

ucType
Defines the type of data represented by this HWMCA_DATATYPE_T structure. Possible values
are:

HWMCA_TYPE_INTEGER
Represents a signed number value in host byte order.

HWMCA_TYPE_OCTETSTRING
Represents a null terminated string value.

HWMCA_TYPE_NULL
Used to denote that no value is present.

HWMCA_TYPE_IPADDRESS
Represents a 32- bit internet address in host byte order.

ulLength
Used to specify the length of the data represented by this HWMCA_DATATYPE_T structure.

pData
A pointer to the actual data that this HWMCA_DATATYPE_T structure represents.

pNext
A pointer to the next HWMCA_DATATYPE_T structure. A NULL is used to indicate that there
are no more structures in the linked list.

Note: The value stored in the pulBytesNeeded field represents the total amount of data returned, while
the ulLength field of each HWMCA_DATATYPE_T structure represents the length of each individual data
element in the series.

HwmcaSet
Used to change or Set the data associated with a specific object attribute. (Refer to ["Function prototypes”]
for the C function prototype for this APL.) The arguments specified for this API are:

pInitialize

A pointer to the HWMCA_INITIALIZE_T structure that was used on the Hwmcalnitialize API.
pszObjectID

A pointer to a null terminated object identifier string for which the data is to be changed or Set.

Refer to [Chapter 4, “Console application managed objects,” on page 75| for more information
about the object identifiers that the Console application manages.

pDataType
A pointer to an HWMCA_DATATYPE_T structure that specifies the data to be used for the Set
request. The fields of the HWMCA_DATATYPE_T structure are:

ucType
Defines the type of data represented by this HWMCA_DATATYPE_T structure. Possible
values are:

HWMCA_TYPE_INTEGER
Represents a signed number value in host byte order.

Note: The Data Exchange APIs currently only support lengths of 2 bytes or 4
bytes for the HWMCA_TYPE_INTEGER data type when using the HwmcaSet.

12 Application Programming Interfaces

HWMCA_TYPE_OCTETSTRING
Represents a null terminated string value.

ulLength
Used to specify the length of the data represented by this HWMCA_DATATYPE_T
structure.

pData A pointer to the actual data that this HWMCA_DATATYPE_T structure represents.
pNext This should be set to NULL for the HwmcaSet API and is ignored.

Refer to [Chapter 4, “Console application managed objects,” on page 75| for a description of the
data types, data lengths, and valid data values of the data associated with each type of object
managed by the Console application.

ulTimeOut
Used to specify the amount of time that the calling application wants to wait for the HwmcaSet to
complete. This value is specified in milliseconds and the value of HWMCA_INFINITE_WAIT can
be used to cause the application to wait forever.

The HwmcaSet API returns an unsigned long integer return code value to the calling application. This
return code lets the calling application know if the change/Set request was successfully delivered and
processed by the Console application. A value of HWMCA_DE_NO_ERROR indicates successful
completion.

HwmcaWaitEvent

Used to wait for event notifications for objects managed by the Console application. The application
specifies the types of events that it wants to receive through the use of the ulEventMask field of the
HWMCA_INITIALIZE T structure that is used on the Hwmcalnitialize APL (Refer to
[prototypes” on page 59| for the C function prototype for this APL) The arguments specified for this API
are:

pInitialize
A pointer to the HWMCA_INITIALIZE_T structure that was used on the Hwmcalnitialize APL

pOutput
A pointer to an output buffer for the returned event notification data.

ulLength
The size of the output buffer specified by the pOutput argument.

pulBytesNeeded
A pointer to an unsigned long integer where the number of total bytes needed for this event
notification is returned. If the returned value is greater than that specified in the ulLength
argument, then the event notification data should not be used, since it is incomplete.

ulTimeOut
Used to specify the amount of time that the calling application wants to wait for an event
notification. This value is specified in milliseconds and the value of HWMCA_INFINITE_WAIT
can be used to cause the application to wait forever.

The HwmcaWaitEvent API returns an unsigned long integer return code value to the calling application.
This return code lets the calling application know if any errors occurred while waiting for the event
notification. A value of HWMCA_DE_NO_ERROR indicates successful completion. A value of
HWMCA_DE_TIMEOUT indicates that no event notifications were present in the specified timeout
period.

Upon successful completion of the HwmcaWaitEvent API, the output buffer specified by pOutput is

populated with a series of one or more HWMCA_DATATYPE_T structures along with their associated
data. The fields of the HWMCA_DATATYPE_T structure are:

Chapter 3. Console application APIs 13

ucType
Defines the type of data represented by this HWMCA_DATATYPE_T structure. Possible values
are:

HWMCA_TYPE_INTEGER
Represents a signed number value in host byte order.

HWMCA_TYPE_OCTETSTRING
Represents a null terminated string value.

HWMCA_TYPE_OBJECTID
Represents a null terminated object identifier string.

ulLength
Used to specify the length of the data represented by this HWMCA_DATATYPE_T structure.

pData A pointer to the actual data that this HWMCA_DATATYPE_T structure represents.

pNext A pointer to the next HWMCA_DATATYPE_T structure. A NULL is used to indicate that there
are no more structures in the linked list.

Note: The value stored in the pulBytesNeeded field represents the total amount of data returned, while the
ulLength field of each HWMCA_DATATYPE _T structure represents the length of each individual data
element in the series.

The series of HWMCA_DATATYPE_T structures returned from the HwmcaWaitEvent API are used to

specify:

* An HWMCA_TYPE_OBJECTID that specifies the object identifier of the object that the event
notification pertains to

 An HWMCA_TYPE_INTEGER that specifies the event notification type for this event

* Any additional data for the event notification type, as specified below.

The additional data for each of the event notification types are:

HWMCA_EVENT_COMMAND_RESPONSE: Used to notify the application of completion information
for a command that has been initiated through the use of the Commands APL

The additional data for this event consists of three object identifier/value pairs that describe the
following:

1. An HWMCA_TYPE_OBJECTID that specifies the object identifier of the command for which this
command response event has been generated.

2. An HWMCA_TYPE_INTEGER that specifies the return code value to be used to determine the
success or failure of the command request that is associated with this command response event.

Note: Refer to|Appendix B, “HWMCA_EVENT COMMAND_RESPONSE return codes,” on page 199
for a list of possible values that can be returned.

3. An HWMCA_TYPE_INTEGER that specifies whether this is the last
HWMCA_EVENT_COMMAND_RESPONSE event that will be issued for this command. A value of
HWMCA_TRUE indicates this event as the last, while a value of HWMCA_FALSE indicates that more
HWMCA_EVENT_COMMAND_RESPONSE events will be forthcoming.

4. An HWMCA_TYPE_OCTETSTRING that specifies the name of the object that the event pertains to.
5. An HWMCA_TYPE_OCTETSTRING that specifies the command correlator.

Note: This field will only be present if the command was invoked using the
HwmcaCorrelatedCommand API call.

14 Application Programming Interfaces

HWMCA_EVENT_MESSAGE: Used to notify the application that an object managed by the Console
application or the Console application itself has a new or refreshed message. This event is generated only
for the base objects and not for copies of objects within user-defined groups.

This event is returned to the application when any combination of the following values is used in the
ulEventMask field of the HWMCA_INITIALIZE T structure:

*+ HWMCA_EVENT_MESSAGE

*+ HWMCA_EVENT_HARDWARE_MESSAGE

* HWMCA_EVENT_OPSYS_MESSAGE

If the HWMCA_EVENT_MESSAGE value is specified in the ulEventMask field of the
HWMCA_INITIALIZE_T structure, then the application will be notified of both hardware and operating
system message events.

If only the HWMCA_EVENT_HARDWARE_MESSAGE or HWMCA_EVENT_OPSYS_MESSAGE value
is specified in the ulEventMask field of the HWMCA_INITIALIZE_T structure, then the application will
be notified only of hardware or operating system message events, respectively.

In addition, the HWMCA_EVENT_NO_REFRESH_MESSAGE value can be specified with the above
values to control whether the application should be notified of HWMCA_EVENT_MESSAGE events for
refreshed messages. If the HWMCA_EVENT_NO_REFRESH_MESSAGE value is specified in the
ulEventMask field of the HWMCA_INITIALIZE_T structure, then the application will not be notified of
HWMCA_EVENT_MESSAGE events for refreshed messages.

The additional data for this event can take on two different formats. The format being received can be
determined through examining the first object identifier/value pair. The object identifier/value pairs for
each of the two formats follows:

An HWMCA_TYPE_INTEGER that specifies whether the message is a hardware or operating system
message (HWMCA_HARDWARE_MESSAGE or HWMCA_OPSYS_MESSAGE).

1. The remaining object identifier/value pair for hardware messages is:
a. An HWMCA_TYPE_OCTETSTRING that specifies the new or refreshed hardware message text.

b. An HWMCA_TYPE_INTEGER that specifies whether the message is a new (HWMCA_FALSE) or
refresh message (HWMCA_TRUE).

c. An HWMCA_TYPE_OCTETSTRING that specifies the time stamp of the new or refreshed
hardware message.

d. An HWMCA_TYPE_OCTETSTRING that specifies the names of the CPC Image object(s)
associated with the object that generated the new or refreshed hardware message. This
HWMCA_TYPE_OCTETSTRING is a null terminated, blank delimited list of the CPC Image
name(s).

When receiving this event from a Support Element Console, this value contains the name(s) of the
CPC Images that are running on the CPC that the Support Element Console is controlling.
When receiving this event from a Hardware Management Console, this value:

* Contains no CPC Image names for hardware messages for the Hardware Management Console
itself

¢ Contains no CPC Image names for Optical Network related hardware messages

* Contains the name(s) of the CPC Images that are running on the CPC that the hardware
message pertains to.

e. An HWMCA_TYPE_OCTETSTRING that specifies the name of the object that the event pertains
to.

2. The remaining object identifier/value pairs for operating system messages are:

a. An HWMCA_TYPE_OCTETSTRING that specifies the new or refreshed operating system message
text.

Chapter 3. Console application APIs 15

Note: If the operating system message text contains multiple lines, then each additional line is
delimited from the next line with the character sequence of a carriage return (\r) and a new line
(\n).

b. An HWMCA_TYPE_OCTETSTRING that specifies the message identifier of the new operating
system message.

c. An HWMCA_TYPE_OCTETSTRING that specifies the date of the new operating system message
or an HWMCA_TYPE_NULL indicating that there is no date value for this new operating system
message.

d. An HWMCA_TYPE_OCTETSTRING that specifies the time of the new operating system message
or an HWMCA_TYPE_NULL indicating that there is no time value for this new operating system
message.

e. An HWMCA_TYPE_INTEGER that specifies whether the new operating system message should
cause the alarm to be sounded (HWMCA_TRUE or HWMCA_FALSE).

f. An HWMCA_TYPE_INTEGER that specifies whether the new operating system message is a
priority message or not (HWMCA_TRUE or HWMCA_FALSE).

g. An HWMCA_TYPE_INTEGER that specifies whether the new operating system message is a held
message or not (HWMCA_TRUE or HWMCA_FALSE).

h. An HWMCA_TYPE_OCTETSTRING that specifies the prompt text that should be associated with
the new operating system message or an HWMCA_TYPE_NULL indicating that there is no
prompt text for this new operating system message.

i. An HWMCA_TYPE_OCTETSTRING that specifies the name of the operating system that generated
this new operating system message or an HWMCA_TYPE_NULL indicating that there is no
operating system name associated with this new operating system message.

j. An HWMCA_TYPE_INTEGER that specifies whether the message is a new (HWMCA_FALSE) or
refresh message (HWMCA_TRUE).

k. An HWMCA_TYPE_OCTETSTRING that specifies the name of the object that the event pertains
to.

HWMCA_EVENT_STATUS_CHANGE: Used to notify the application that an object managed by the
Console application has changed status. This event is generated only for the base objects and not for
copies of objects within user-defined groups.

The additional data for this event consists of two object identifier/value pairs that describe the following:
1. An HWMCA_TYPE_INTEGER that specifies the new status value

2. An HWMCA_TYPE_INTEGER that specifies the old status value.

3. An HWMCA_TYPE_OCTETSTRING that specifies the name of the object that the event pertains to.

HWMCA_EVENT_NAME_CHANGE: Used to notify the application that an object managed by the
Console application has had a name change. This event notification can be useful when an application
retains the object identifiers for objects it is interested in, since the name of an object is used to build the
unique portion of the object identifier. This event is generated only for the base objects and not for copies
of objects within user-defined groups.

The additional data for this event consists of two object identifier/value pairs that describe the following:
1. An HWMCA_TYPE_OCTETSTRING that specifies the new object name
2. An HWMCA_TYPE_OCTETSTRING that specifies the old object name.

HWMCA_EVENT_ACTIVATE_PROF_CHANGE: Used to notify the application that an object managed
by the Console application has changed which activation profile is associated with it.

The additional data for this event consists of two object identifier/value pairs that describe the following:
1. An HWMCA_TYPE_OCTETSTRING that specifies the new activation profile name

16 Application Programming Interfaces

2. An HWMCA_TYPE_OCTETSTRING that specifies the old activation profile name.
3. An HWMCA_TYPE_OCTETSTRING that specifies the name of the object that the event pertains to.

HWMCA_EVENT_CREATED: Used to notify the application that a new object managed by the Console
application has been defined or instantiated.

The additional data for this event consists of an object identifier/value pair for an
HWMCA_TYPE_OCTETSTRING that specifies the name of the object that the event pertains to.

HWMCA_EVENT_DESTROYED: Used to notify the application that an object managed by the Console
application has been undefined.

The additional data for this event consists of an object identifier/value pair for an
HWMCA_TYPE_OCTETSTRING that specifies the name of the object that the event pertains to.

HWMCA_EVENT_EXCEPTION_STATE: Used to notify the application that an object managed by the
Console application has either entered into or out of an exception state. An object is considered in an
exception state when its status is not considered acceptable as defined by the acceptable status attribute
of the object. This event is generated only for the base objects and not for copies of objects within
user-defined groups.

The additional data for this event consists of two object identifier/value pairs that describe the following;:

1. An HWMCA_TYPE_INTEGER that specifies whether the object is entering into an exception state
(HWMCA_TRUE) or leaving an exception state (HWMCA_FALSE).

2. An HWMCA_TYPE_INTEGER that specifies the status value for the object.
3. An HWMCA_TYPE_OCTETSTRING that specifies the name of the object that the event pertains to.

HWMCA_EVENT_STARTED: Used to notify the application that the Console application has started
and is now ready to handle Data Exchange APIs and Commands API request.

The additional data for this event consists of an object identifier/value pair for an
HWMCA_TYPE_OCTETSTRING that specifies the name of the object that the event pertains to.

HWMCA_EVENT_ENDED: Used to notify the application that the Console application is ending.

The additional data for this event consists of the following object identifier /value pairs:

1. An HWMCA_TYPE_INTEGER that specifies the reason for the event. The possible values are:
« HWMCA_ENDED_USER - the event was initiated by a user,
* HWMCA_ENDED_AUTOMATION - the event was initiated by automation, or

« HWMCA_ENDED_OTHER - the event was initiated by the Console application itself (for example,
recovery action, change management, etc.)

2. An HWMCA_TYPE_OCTETSTRING that specifies the name of the Console application component
that caused the event.

3. An HWMCA_TYPE_INTEGER that specifies the shutdown type for the event. The possible values are:

« HWMCA_SHUTDOWN_CONSOLE - the console has been shut down and will take manual
intervention to be restarted,

* HWMCA_RESTART_APPLICATION - the console application has been stopped and will
automatically be restarted, or

« HWMCA_RESTART_CONSOLE - the console has been stopped and will automatically be restarted.
4. An HWMCA_TYPE_OCTETSTRING that specifies the name of the object that the event pertains to.

Chapter 3. Console application APIs 17

HWMCA_EVENT_HARDWARE_MESSAGE_DELETE: Used to notify the application that a hardware
message associated with an object managed by the Console application or the Console application itself,
has been deleted. This event is generated only for the base objects and not for copies of objects within
user-defined groups.

The additional data for this event consists of the following object identifier/value pairs:
1. An HWMCA_TYPE_INTEGER that specifies that the message being deleted is a hardware message
(HWMCA_HARDWARE_MESSAGE).

2. An HWMCA_TYPE_OCTETSTRING that specifies the message text for the hardware message being
deleted.

3. An HWMCA_TYPE_INTEGER that is always set to HWMCA_FALSE for this event.
4. An HWMCA_TYPE_OCTETSTRING that specifies the time stamp of the hardware message being
deleted.

5. An HWMCA_TYPE_OCTETSTRING that specifies the names of the CPC Image object(s) associated
with the object for which the hardware message is being deleted. This
HWMCA_TYPE_OCTETSTRING is a null terminated, blank delimited list of the CPC Image name(s).

When receiving this event from a Support Element Console, this value contains the name(s) of the

CPC Images that are running on the CPC that the Support Element Console is controlling.

When receiving this event from a Hardware Management Console, this value:

¢ Contains no CPC Image names for hardware messages for the Hardware Management Console
itself

¢ Contains no CPC Image names for Optical Network related hardware messages

* Contains the name(s) of the CPC Images that are running on the CPC that the hardware message
pertains to.

6. An HWMCA_TYPE_OCTETSTRING that specifies the name of the object that the event pertains to.

Note: The application should ensure that it provides a buffer that is at least large enough to hold the
HWMCA_DATATYPE_T structures and associated data for the event notification object identifier and
type. A constant, HWMCA_MIN_EVENT_BUF_SIZE is provided to the application for this purpose. In
addition, another constant, HWMCA_MAX_EVENT_BUF_SIZE is provided to the application. This
constant can be used to allocate a buffer large enough to hold any event notification. It is important to
note that although the HWMCA_MAX_EVENT_BUF_SIZE constant can be used to allocate a buffer large
enough for any event, it is not intended to indicate a buffer of this size is large enough for all HwmcaGet
requests.

HWMCA_EVENT_SECURITY_EVENT: Used to notify the application that a security event has been
logged.

The additional data for this event consists of the following object identifier/value pairs:
1. An HWMCA_TYPE_OCTETSTRING that specifies the time stamp of the security log.
2. An HWMCA_TYPE_OCTETSTRING that specifies the text of the security log.

3. An HWMCA_TYPE_OCTETSTRING that specifies the name of the object that the event pertains to (in
this case the console itself).

HWMCA_EVENT_CAPACITY_CHANGE: Used to notify the application that the processing capacity
for a Defined CPC object has changed in some manner. The additional data for this event consists of the
following object identifier/value pairs:

1. An HWMCA_TYPE_INTEGER that specifies the type of capacity change that occurred, using one of
the following constants:

* HWMCA_CAPACITY_FENCED_BOOK A processor book has been fenced and is not longer usable.
« HWMCA_CAPACITY_DEFECTIVE_PROCESSOR A processor has become defective.

18 Application Programming Interfaces

« HWMCA_CAPACITY_CONCURRENT_BOOK_REPLACE A concurrent processor book replacement
has been performed.

* HWMCA_CAPACITY_CONCURRENT_BOOK_ADD A concurrent processor book addition has
been performed.

* HWMCA_CAPACITY_CHECK_STOP A processor has gone into a check stopped state.

« HWMCA_CAPACITY_CHANGES_ALLOWED A user has configured the APIs to be allowed to
perform capacity changes.

« HWMCA_CAPACITY_CHANGES_NOT_ALLOWED A user has configured the APIs to no longer
be allowed to perform capacity changes.

An HWMCA_TYPE_OCTETSTRING that specifies the name of the object that the event pertains to (in
this case a Defined CPC object).

HWMCA_EVENT_CAPACITY_RECORD_CHANGE: Used to notify the application that a change has
occurred to a temporary capacity record. The additional data for this event consists of the following
object identifier /value pairs:

1.

An HWMCA_TYPE_INTEGER that specifies the type of capacity record change that occurred, using
one of the following constants:

« HWMCA_CAPACITY_RECORD_ADD The capacity record has been added to the machine.
* HWMCA_CAPACITY_RECORD_DELTA The capacity record has been modified.

« HWMCA_CAPACITY_RECORD_DELETE The capacity record has been deleted.

« HWMCA_CAPACITY_RECORD_ACCOUNTING

* HWMCA_CAPACITY_ACTIVATION_LEVEL The capacity record has changed it's level of
activation (either more resources from this record have been added or removed from the machine).

« HWMCA_CAPACITY_PRIORITY_PENDING Additional capacity has been added for the capacity
record, with priority, but not enough resources were available to allow for all the capacity specified
to be put into effect. As resources become available they will be added for this record in order to
completely satisfy the original request for additional capacity.

« HWMCA_CAPACITY_RECORD_OTHER The capacity record has changed in some other manner.

An HWMCA_TYPE_OCTETSTRING for the temporary capacity record identifier that has changed.

An HWMCA_TYPE_OCTETSTRING that specifies the name of the object that the event pertains to (in
this case a Defined CPC object).

HWMCA_EVENT_DISABLED_WAIT: Used to notify the application that a CPC Image object has
entered a disabled wait state. The additional data for this event consists of the following object
identifier/value pairs:

1.

An HWMCA_TYPE_OCTETSTRING for the name of the Defined CPC that is associated with the CPC
Image that entered a disabled wait state.

An HWMCA_TYPE_OCTETSTRING for the disabled wait PSW value.

An HWMCA_TYPE_INTEGER for the partition identifier of the CPC Image that entered a disabled
wait state.

An HWMCA_TYPE_INTEGER for the number of the processor that entered a disabled wait state.

An HWMCA_TYPE_OCTETSTRING for the serial number of the Defined CPC that is associated with
the CPC Image that entered a disabled wait state.

An HWMCA_TYPE_OCTETSTRING that specifies the name of the object that the event pertains to (in
this case a CPC Image object).

An HWMCA_TYPE_INTEGER that specifies if the disabled wait event was due to an SCP initiated
reset (HWMCA_TRUE) or not (HWMCA_FALSE).

HwmcaTerminate
Used to perform any cleanup tasks required by any of the other APIs. An application should always
perform an HwmcaTerminate whenever a successful Hwmcalnitialize has been done after the application

Chapter 3. Console application APIs 19

has completed all the activities that are required using the Data Exchange APIs and Commands APL
(Refer to|“Function prototypes” on page 59for the C function prototype for this APL) The arguments
specified for this API are:

pInitialize
A pointer to the HWMCA_INITIALIZE_T structure that was used on the Hwmcalnitialize API.

ulTimeOut
Used to specify the amount of time that the calling application wants to wait for the
HwmcaTerminate to complete. This value is specified in milliseconds and the value of
HWMCA_INFINITE_WAIT can be used to cause the application to wait forever.

The HwmcaTerminate API returns an unsigned long integer return code value to the calling application.
This return code lets the calling application know if the terminate request was successfully delivered and
processed by the Console application. A value of HWMCA_DE_NO_ERROR indicates successful
completion.

Once the HwmcaTerminate has been successfully called, the HWMCA_INITIALIZE_T structure can then
be used for another purpose or freed, depending on the needs of the application.

HwmcaBuildid

A convenience routine to aid the application program in constructing an object identifier for any object
supported by the Console. (Refer to [“Function prototypes” on page 59| for the C function prototype for
this APL.) The arguments specified for this API are:

pszBuffer
A pointer to a buffer where the built object identifier string is to be placed. It is recommended
that this buffer be at least HWMCA_MAX_ID_LEN bytes in length.

pszPrefix
A pointer to the prefix string to be used for the object identifier to be built. Any of the valid
prefixes defined in the Data Exchange APIs include file can be used, such as:
* HWMCA_CONSOLE_ID
+ HWMCA_CFG_CPC_GROUP_ID
+ HWMCA_CFG_CPC_ID
* HWMCA_CPC_IMAGE_GROUP_ID
*+ HWMCA_CPC_IMAGE_ID
« HWMCA_GROUPS_GROUP_ID
+ HWMCA_GROUPS_OBJECT_ID
+ HWMCA_COMMAND_PREFIX
* HWMCA_ACT_RESET_OBJECT_ID
+ HWMCA_ACT_IMAGE_OBJECT_ID
+ HWMCA_ACT_LOAD_OBJECT_ID
+ HWMCA_ACT_GROUP_OBJECT_ID
+ HWMCA_CAPACITY_RECORD_OBJECT_ID
* HWMCA_CFG_VM_GROUP_ID
*+ HWMCA_VM_OBJECT_ID

pszAttribute
A pointer to the attribute suffix string to be used for the object identifier to be built. This can be
specified as NULL, when building an identifier for an object itself, as opposed to an attribute
object identifier. (Any of the HWMCA_*_SUFFIX constants can be specified in this argument.)

pszGroupName
A pointer to the group name to be used for building the object identifier. This can be specified as
NULL, when building an object identifier for a predefined group or an object contained within a
predefined group.

20 Application Programming Interfaces

pszObjectName
A pointer to the object name to be used for building the object identifier. This can be specified as
NULL, when building an object identifier for a predefined or user-defined group object.

Note: Refer to[“Console application object identifier conventions” on page 75 for more information on
the conventions used for the object identifiers for objects managed by the Console.

HwmcaBuildAttributeld

A convenience routine to aid the application program in constructing an attribute object identifier for any
object supported by the Console, based on the object identifier of the object itself. (Refer to
[prototypes” on page 59| for the C function prototype for this APL) The arguments specified for this API
are:

pszBuffer
A pointer to a buffer where the built object identifier string is to be placed. It is recommended
that this buffer be at least HWMCA_MAX_ID_LEN bytes in length.

pszObjectID
A pointer to the object identifier of the object for which the attribute identifier is to be built.

pszAttribute
A pointer to the attribute suffix string to be used for the object identifier to be built. (Any of the
HWMCA_*_SUFFIX constants can be specified in this argument.)

Note: Refer to[“Console application object identifier conventions” on page 75 for more information on
the conventions used for the object identifiers for objects managed by the Console.

Commands API

Allows other applications, local or remote, the ability to execute commands against the objects that the
Console application manages. Specifically, this support will allow other applications to request the
Console applications to perform the following commands:
* Activate

* Reset Normal

* Reset Clear

* Deactivate

¢ Send Operating System command

* Start

* Stop

* PSW Restart

* Load

* Hardware Message Refresh

* Hardware Message Delete

* Activate CBU

¢ Undo CBU

* Import Profile

* Export Profile

* Reserve

* External Interrupt

* SCSI Load

e SCSI Dump

¢ Shutdown/Restart

* Activate On/Off CoD

* Undo On/Off CoD

* Add Temporary Capacity

* Remove Temporary Capacity

e Swap Current Time Server

* Set STP Configuration

Chapter 3. Console application APIs 21

¢ Change STP-only CTN
* Join STP-only CTN
e Leave STP-only CTN

The Commands API uses the Simple Network Management Protocol (SNMP) as the transport mechanism.
The underlying SNMP protocol is encapsulated in the HwmcaCommand API in order to reduce the
complexities for the application programmer. Refer to following pages for additional information about
the HwmcaCommand.

HwmcaCommand

Used to perform a command against a specific object managed by the Console. (Refer to
[orototypes” on page 59| for the C function prototype for this APL) The arguments specified for this API
are:

pInitialize
A pointer to the HWMCA_INITIALIZE_T structure that was used on the Hwmcalnitialize API.

pszObjectID
A pointer to a null terminated object identifier string for the target object of the command. Refer
to [Chapter 4, “Console application managed objects,” on page 75| for more information about the
object identifiers that the Console manages.

pszCommandID
A pointer to a null terminated object identifier string for the object identifier of the command that
is to be executed. Valid values for this argument are:
* HWMCA_ACTIVATE_COMMAND
+ HWMCA_DEACTIVATE_COMMAND
* HWMCA_RESETNORMAL_COMMAND
* HWMCA_START_COMMAND
* HWMCA_STOP_COMMAND
* HWMCA_PSWRESTART_COMMAND
* HWMCA_SEND_OPSYS_COMMAND
* HWMCA_LOAD_COMMAND
* HWMCA_HW_MESSAGE_REFRESH_COMMAND
* HWMCA_RESETCLEAR_COMMAND
+ HWMCA_HW_MESSAGE_DELETE_COMMAND
+ HWMCA_ACTIVATE_CBU_COMMAND
* HWMCA_UNDO_CBU_COMMAND
* HWMCA_IMPORT_PROFILE_COMMAND
* HWMCA_EXPORT_PROFILE_COMMAND
* HWMCA_RESERVE_COMMAND
* HWMCA_EXTERNAL_INTERRUPT_COMMAND
* HWMCA_SCSI_LOAD_COMMAND
* HWMCA_SCSI_DUMP_COMMAND
* HWMCA_SHUTDOWN_RESTART_COMMAND
* HWMCA_ACTIVATE_OOCOD_COMMAND
+ HWMCA_UNDO_OOCOD_COMMAND
* HWMCA_ADD_CAPACITY_COMMAND
* HWMCA_REMOVE_CAPACITY_COMMAND
* HWMCA_SYSPLEX_TIME_SWAP_CTS_COMMAND
* HWMCA_SYSPLEX_TIME_SET_STP_CONFIG_COMMAND
* HWMCA_SYSPLEX_TIME_CHANGE_STP_ONLY_CTN_ COMMAND
* HWMCA_SYSPLEX_TIME_JOIN_STP_ONLY_CTN_COMMAND
* HWMCA_SYSPLEX_TIME_LEAVE_STP_ONLY_CTN_ COMMAND

pDatatype
A pointer to a linked list of HWMCA_DATATYPE _T structures used to represent the arguments
to be passed to the specified command.

22 Application Programming Interfaces

The HwmcaCommand API returns an unsigned long integer return code value to the calling application.
This return code lets the calling application know if the command request was successfully delivered for
execution to the Console application. A value of HWMCA_CMD_NO_ERROR indicates successful
completion.

Once the application determines that the command request has been successfully delivered to the
Console, it must wait for one or more HWMCA_EVENT_COMMAND_RESPONSE event notification(s)
for this command request. This is accomplished through the use of the HwmcaWaitEvent. All applications
are implicitly registered for this event type. The HWMCA_EVENT_COMMAND_RESPONSE event
notification will contain:

* Object identifier of the object for which command request was targeted,

* Object identifier for the command that was requested to be executed,

* Return code value that can be used to determine the success or failure of the command request, and

* An indication of whether this event is the last HWMCA_EVENT_COMMAND_RESPONSE event
notification that should be expected for this command.

Refer to ["HwmcaWaitEvent” on page 13|for more details regarding the data returned from the
HwmcaWaitEvent for the HWMCA_EVENT_COMMAND_RESPONSE event notification.

The exceptions to this rule are HWMCA_HW_MESSAGE_REFRESH_COMMAND and
HWMCA_HW_MESSAGE_DELETE_COMMAND commands. There is no need to wait for a
HWMCA_EVENT_COMMAND_RESPONSE event notification for these commands. These commands
are finished once the HwmcaCommand has completed.

HwmcaCorrelatedCommand

Used to perform a command against a specific object managed by the Console. (Refer to
[prototypes” on page 59| for the C function prototype for this APL.) While similar to the HwmcaCommand
API, this API call is intended to be used to allow the caller to specify some unique correlator data that
will then be provided back to the caller as part of the HWMCA_EVENT_COMMAND_RESPONSE
event, so that the caller can be sure that the event was a result of the command that it requested to be
executed. The arguments specified for this API are:

plnitialize

A pointer to the HWMCA_INITIALIZE_T structure that was used on the Hwmcalnitialize APL
pszObjectld

A pointer to a null terminated object identifier string for the target object of the command. Refer

to [Chapter 4, “Console application managed objects,” on page 75| for more information about the
object identifiers that the Console manages.

pszCommandId
A pointer to a null terminated object identifier string for the object identifier of the command that
is to be executed.

pDataType
A pointer to a linked list of HWMCA_DATATYPE _T structures used to represent the arguments
to be passed to the specified command.

ulTimeout
Used to specify the amount of time that the calling application wants to wait for the
HuwmcaCorrelatedCommand to complete. This value is specified in milliseconds and the value of
HWMCA_INFINITE_WAIT can be used to cause the application to wait forever.

pCorrelator
A pointer to the data to be used as a correlator for the specified command.

correlatorSize
The length of the correlator data.

Chapter 3. Console application APIs 23

The HwmcaCorrelatedCommand API returns an unsigned long integer return code value to the calling
application. This return code lets the calling application know if the command request was successfully
delivered for execution to the Console application. A value of HWMCA_CMD_NO_ERROR indicates
successful completion. Once the application determines that the command request has been successfully
delivered to the Console, it must wait for one or more HWMCA_EVENT_COMMAND_RESPONSE
event notification(s) for this command request. This is accomplished through the use of the
HwmcaWaitEvent. All applications are implicitly registered for this event type. The
HWMCA_EVENT_COMMAND_RESPONSE event notification will contain:

* Object identifier of the object for which command request was targeted,
* Object identifier for the command that was requested to be executed,
* Return code value that can be used to determine the success or failure of the command request, and

* An indication of whether this event is the last HWMCA_EVENT_COMMAND_RESPONSE event
notification that should be expected for this command.

¢ The command correlator specified when the command was invoked.

Refer to ["HwmcaWaitEvent” on page 13|for more details regarding the data returned from the
HwmcaWaitEvent for the HWMCA_EVENT_COMMAND_RESPONSE event notification.

Command arguments
The acceptable and/or required arguments for each command are as follows.

HWMCA_ACTIVATE_COMMAND
No arguments are required, but the following arguments can optionally be specified:

Activation profile name
Name of the activation profile to be used for the Activate command. The default is to use
the profile name specified in the Activation profile name attribute for the specified object.

Force indicator
An indicator used to request conditional processing of the Activate command depending
on the state of the target object. The default is to unconditionally perform the command
(that is, FORCE=TRUE) no matter what the state of the target object is.

Either one or both of these arguments can be specified, but they must be specified in the order
shown by the preceding list. If an argument is not specified, then the default for that argument is
used. In order to specify an argument, such that the default will be used, the
HWMCA_DATATYPE_T structure used to describe the argument should be specified as follows:

ucType
Should be set to HWMCA_TYPE_NULL.

ulLength
Should be set to zero.

pData A pointer value of zero.

pNext Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

The default for any argument can be overridden by specifying the HWMCA_DATATYPE_T
structure used to describe the argument as follows:

Activation profile name

ucType
Should be set to HWMCA_TYPE_OCTETSTRING.

ulLength
Should be set to the length of the activation profile name (including the null terminator).

24 Application Programming Interfaces

pData A pointer to the activation profile name itself.

pNext Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

Force Indicator

ucType
Should be set to HWMCA_TYPE_INTEGER.

ulLength
Should be set to 2.

pData A pointer to a field containing the value HWMCA_TRUE for the command to be
performed unconditionally or HWMCA_FALSE for the command to be performed
conditionally based on the state of the target object.

pNext Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

HWMCA_DEACTIVATE_COMMAND
No arguments are required, but optionally a Force indicator can be specified for the Deactivate
command. If this argument is not specified, then the default is to unconditionally perform the
command (that is, FORCE=TRUE) no matter what the state of the target object is. The fields of
the HWMCA_DATATYPE_T structure used to describe the optional Force indicator are:

ucType
Should be set to HWMCA_TYPE_INTEGER.

ulLength
Should be set to 2.

pData A pointer to a field containing the value HWMCA_TRUE for the command to be
performed unconditionally or HWMCA_FALSE for the command to be performed
conditionally based on the state of the target object.

pNext Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

HWMCA_RESETNORMAL_COMMAND
No arguments are required, but the following arguments can optionally be specified:

Force indicator
An indicator used to request conditional processing of the Reset Normal command
depending on the state of the target object. The default is to unconditionally perform the
command (that is, FORCE-TRUE) no matter what the state of the target object is.

IPL Token
An IPL token to associate with the Reset Normal command. The default is to not
associate an IPL token with the command.

Either one or both of these arguments can be specified, but they must be specified in the order
shown by the preceding list. If an argument is not specified, then the default for that argument is
used. In order to specify an argument, such that the default will be used, the
HWMCA_DATATYPE_T structure used to describe the argument should be specified as follows:

ucType
Should be set to HWMCA_TYPE_NULL.

ulLength
Should be set to zero.

pData A pointer value of zero.

Chapter 3. Console application APIs 25

pNext Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

The default for any argument can be overridden by specifying the HWMCA_DATATYPE_T
structure used to describe the argument as follows:

Force Indicator

ucType
Should be set to HWMCA_TYPE_INTEGER.

ulLength
Should be set to 2.

pData A pointer to a field containing the value HWMCA_TRUE for the command to be
performed unconditionally or HWMCA_FALSE for the command to be performed
conditionally based on the state of the target object.

pNext Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

IPL Token

ucType
Should be set to HWMCA_TYPE_OCTETSTRING.

ulLength
Should be set to the length of the IPL token.

pData A pointer to the IPL token itself.

pNext Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

HWMCA_RESETCLEAR_COMMAND
No arguments are required, but the following arguments can optionally be specified:

Force indicator
An indicator used to request conditional processing of the Reset Clear command
depending on the state of the target object. The default is to unconditionally perform the
command (that is, FORCE-TRUE) no matter what the state of the target object is.

IPL Token
An IPL token to associate with the Reset Clear command. The default is to not associate
an IPL token with the command.

Either one or both of these arguments can be specified, but they must be specified in the order
shown by the preceding list. If an argument is not specified, then the default for that argument is
used. In order to specify an argument, such that the default will be used, the
HWMCA_DATATYPE_T structure used to describe the argument should be specified as follows:

ucType
Should be set to HWMCA_TYPE_NULL.

ulLength
Should be set to zero.

pData A pointer value of zero.

pNext Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

The default for any argument can be overridden by specifying the HWMCA_DATATYPE_T
structure used to describe the argument as follows:

Force Indicator

26 Application Programming Interfaces

ucType
Should be set to HWMCA_TYPE_INTEGER.

ulLength
Should be set to 2.

pData A pointer to a field containing the value HWMCA_TRUE for the command to be
performed unconditionally or HWMCA_FALSE for the command to be performed
conditionally based on the state of the target object.

pNext Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

IPL Token

ucType
Should be set to HWMCA_TYPE_OCTETSTRING.

ulLength
Should be set to the length of the IPL token.

pData A pointer to the IPL token itself.

pNext Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

HWMCA_START_COMMAND
No arguments are accepted or required.

HWMCA_STOP_COMMAND
No arguments are accepted or required.

HWMCA_PSWRESTART_COMMAND
No arguments are accepted or required.

HWMCA_SEND_OPSYS_COMMAND
This command requires the following two arguments:
* An indication of whether this is a priority operating system command
* The text of the operating system command.

The fields of the HWMCA_DATATYPE_T structures used to describe these two arguments are:
Priority Indicator

ucType
Should be set to HWMCA_TYPE_INTEGER.

ulLength
Should be set to 2.

pData A pointer to a field containing the value HWMCA_TRUE for priority operating system
commands or HWMCA_FALSE for nonpriority operating system commands.

pNext Should be set to the address of the HWMCA_DATATYPE_T structure used to describe
the text for the operating system command itself.

Operating System Command Text

ucType
Should be set to HWMCA_TYPE_OCTETSTRING

ulLength
Should be set to the length of the operating system command (including the null
terminator).

Chapter 3. Console application APIs 27

Note: The operating system command itself should have a length of at least one byte, not
including the null terminator.

pData Should be a pointer to the operating system command itself.
pNext Should be set to NULL, since this is the last argument expected for this command.

HWMCA_LOAD_COMMAND
No arguments are required, but the following arguments can optionally be specified:

Load address
Hexadecimal address to be used when performing the Load. The default will be to use
the Load address last used when a Load was performed for the object.

Load parameter
Parameter string to be used when performing the Load. The default will be to use the
Load parameter last used when a Load was performed for the object.

Clear indicator
Whether or not memory should be cleared before performing the Load. The default is to
clear memory before performing the Load.

Timeout
Amount of time (in seconds) to wait for the Load to complete. The default timeout is 60
seconds.

Store status indicator
Whether or not status should be stored before performing the Load. The default is not to
store status before performing the Load.

Force indicator
An indicator used to request conditional processing of the Load command depending on
the state of the target object. The default is to unconditionally perform the command (that
is, FORCE=TRUE) no matter what the state of the target object is.

IPL Token
An IPL token to associate with the Load command. The default is to not associate an IPL
token with the command.

Any number of arguments can be specified; however, they must be specified in the order shown
by the preceding list. If an argument is not specified, then the default for that argument is used.
In order to specify an argument, such that the default will be used, the HWMCA_DATATYPE_T
structure used to describe the argument should be specified as follows:

ucType
Should be set to HWMCA_TYPE_NULL.

ulLength
Should be set to zero.

pData A pointer value of zero.

pNext Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

The default for any argument can be overridden by specifying the HWMCA_DATATYPE_T
structure used to describe the argument as follows:

Load address

ucType
Should be set to HWMCA_TYPE_OCTETSTRING.

28 Application Programming Interfaces

ulLength
Should be set to the length of the address string to be used when performing the Load
(including the null terminator). This string (including the null terminator) must be less
than or equal to 6 characters.

pData Should be a pointer to a field containing the address string to be used when performing
the Load. This string must consist of only hexadecimal characters.

pNext Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

Load parameter

ucType
Should be set to HWMCA_TYPE_OCTETSTRING.

ulLength
Should be set to the length of the parameter string to be used when performing the Load
(including the null terminator). This string (including the null terminator) must be less
than or equal to nine characters.

pData Should be a pointer to a field containing the parameter string to be used when
performing the Load.

pNext Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

Clear indicator

ucType
Should be set to HWMCA_TYPE_INTEGER.

ulLength
Should be set to 2.

pData A pointer to a field containing the value HWMCA_TRUE for memory to be cleared
before performing the Load or HWMCA_FALSE to bypass the clearing of memory before
performing the Load.

pNext Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

Timeout

ucType
Should be set to HWMCA_TYPE_INTEGER.

ulLength
Should be set to 2.

pData A pointer to a field containing the timeout value that is to be used when performing the
Load. This value must be between 60 seconds and 600 seconds.

pNext Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

Store status indicator

ucType
Should be set to HWMCA_TYPE_INTEGER.

ulLength
Should be set to 2.

Chapter 3. Console application APIs 29

pData A pointer to a field containing the value HWMCA_TRUE for status to be stored before
performing the Load or HWMCA_FALSE to bypass the storing of status before
performing the Load.

pNext Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

Force indicator

ucType
Should be set to HWMCA_TYPE_INTEGER.

ulLength
Should be set to 2.

pData A pointer to a field containing the value HWMCA_TRUE for the command to be
performed unconditionally or HWMCA_FALSE for the command to be performed
conditionally based on the state of the target object.

pNext Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

IPL Token

ucType
Should be set to HWMCA_TYPE_OCTETSTRING.

ulLength
Should be set to the length of the IPL token.

pData A pointer to the IPL token itself.

pNext Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

HWMCA_HW_MESSAGE_REFRESH_COMMAND
No arguments are accepted or required.

HWMCA_HW_MESSAGE_DELETE_COMMAND
This command requires the following argument:
* The time stamp of the hardware message.

The fields of the HWMCA_DATATYPE_T structure used to describe the time stamp value are:

ucType
Should be set to HWMCA_TYPE_OCTETSTRING.

ulLength
Should be set to the length of the time stamp (including the null terminator).

pData A pointer to the time stamp string itself.
pNext Should be set to NULL, since this command only accepts one argument.

HWMCA_ACTIVATE_CBU_COMMAND
This command has one required and one optional argument:
* An indicator of whether a real or test CBU activation should be performed is required.
¢ The password used to validate the CBU activation is optional. If not specified, the password
will be obtained automatically from the IBM support system.

The fields of the HWMCA_DATATYPE_T structure used to describe these arguments are:
Reall/Test Indicator

ucType
Should be set to HWMCA_TYPE_INTEGER.

30 Application Programming Interfaces

ulLength
Should be set to 2.

pData A pointer to a field containing the value HWMCA_TRUE for a real CBU activation or
HWMCA_FALSE for a test CBU activation.

pNext Should be set to NULL, if this is the last argument to being specified, or this should point
to the HWMCA_DATATYPE_T structure used to describe the next argument.

Password

ucType
Should be set to HWMCA_TYPE_OCTETSTRING.

ulLength
Should be set to the length of the password (including the null terminator).

pData A pointer to the password string itself.
pNext Should be set to NULL, if this is the last argument expected for this command.

HWMCA_UNDO_CBU_COMMAND
No arguments are accepted or required.

HWMCA_IMPORT_PROFILE_COMMAND
This command requires the following argument:
* The profile area to be imported.

The fields of the HWMCA_DATATYPE_T structure used to describe the profile area are:

ucType
Should be set to HWMCA_TYPE_INTEGER.

ulLength
Should be set to 2.

pData Should be an integer value greater than or equal to 1 and less than or equal to 4,
indicating the profile area to be imported.

pNext Should be set to NULL, since this command only accepts one argument.

HWMCA_EXPORT_PROFILE_COMMAND
This command requires the following argument:
* The profile area to be exported.

The fields of the HWMCA_DATATYPE_T structure used to describe the profile area are:

ucType
Should be set to HWMCA_TYPE_INTEGER.

ulLength
Should be set to 2.

pData Should be an integer value greater than or equal to 1 and less than or equal to 4,
indicating the profile area to be exported.

pNext Should be set to NULL, since this command only accepts one argument.

HWMCA_RESERVE_COMMAND
Note: This command is available only on a Support Element console. After successfully issuing
this command to request the reserve, all API command requests and the majority of other API
requests will be blocked, including those from the issuer of the reserve request, until the reserve
is released.

This command requires the following arguments:
* An indicator of whether the reserve is being requested or released.
¢ The name of the application requesting/releasing the reserve (exclusive control).

Chapter 3. Console application APIs 31

The fields of the HWMCA_DATATYPE_T structure used to describe these two arguments are:
Request/Release Indicator

ucType
Should be set to HWMCA_TYPE_INTEGER.

ulLength
Should be set to 2.

pData A pointer to a field containing the value HWMCA_TRUE when requesting the reserve or
HWMCA_FALSE when releasing the reserve.

pNext Should be set to the address of the HWMCA_DATATYPE_T structure used to describe
the text for the application name.

Application Name

ucType
Should be set to HWMCA_TYPE_OCTETSTRING.

ulLength
Should be set to the length of the application name (including the null terminator). The
length of this field including the null terminator must be less than or equal to 9
characters.

pData A pointer to the application itself.
pNext Should be set to NULL, since this is the last argument expected for this command.

HWMCA_EXTERNAL_INTERRUPT_COMMAND
This command requires the following argument:
¢ The number of the processor that is the target of the external interrupt command. This is a
number between zero and the maximum number of processors for the target CPC Image object.

The fields of the HWMCA_DATATYPE_T structure used to describe the application name are:

ucType
Should be set to HWMCA_TYPE_INTEGER.

ulLength
Should be set to 2.

pData A pointer to the processor number.
pNext Should be set to NULL, since this command only accepts one argument.

ulTimeOut
Used to specify the amount of time that the calling application wants to wait for the
HwmcaCommand to complete. This value is specified in milliseconds and the value of
HWMCA_INFINITE_WAIT can be used to cause the application to wait forever.

HWMCA_SCSI_LOAD_COMMAND
No arguments are required, but the following arguments can optionally be specified:

Load address
Hexadecimal address to be used when performing the SCSI Load. The default will be to
use the Load address last used when a SCSI Load was performed for the object.

Load parameter
Parameter string to be used when performing the SCSI Load. The default will be to use
the Load parameter last used when a SCSI Load was performed for the object.

Worldwide port name
The worldwide port name (WWPN) to be used for the SCSI Load. The default will be to
use the worldwide port name last used when a SCSI Load was performed for the object.

32 Application Programming Interfaces

Logical unit number
The logical unit number (LUN) to be used for the SCSI Load. The default will be to use
the logical unit number last used when a SCSI Load was performed for the object.

Boot program selector
The boot program selector to be used for the SCSI Load. The default will be to use the
boot program selector last used when a SCSI Load was performed for the object.

Operating system specific load parameters
The operating system specific load parameters to be used for the SCSI Load. The default
will be to use the operating system specific load parameters last used when a SCSI Load
was performed for the object.

Boot record logical block address
The boot record logical block address to be used for the SCSI Load. The default will be to
use the boot record logical block address last used when a SCSI Load was performed for
the object.

Force indicator
An indicator used to request conditional processing of the SCSI Load command
depending on the state of the target object. The default is to unconditionally perform the
command (that is, FORCE=TRUE) no matter what the state of the target object is.

Any number of arguments can be specified; however, they must be specified in the order shown
by the preceding list. If an argument is not specified, then the default for that argument is used.
In order to specify an argument, such that the default will be used, the HWMCA_DATATYPE_T
structure used to describe the argument should be specified as follows:

ucType
Should be set to HWMCA_TYPE_NULL.

ulLength
Should be set to zero.

pData
A pointer value of zero.

pNext Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

The default for any argument can be overridden by specifying the HWMCA_DATATYPE_T
structure used to describe the argument as follows:

Load address

ucType
Should be set to HWMCA_TYPE_OCTETSTRING.

ulLength
Should be set to the length of the address string to be used when performing the SCSI
Load (including the null terminator). This string (including the null terminator) must be
less than or equal to 5 characters.

pData Should be a pointer to a field containing the address string to be used when performing
the SCSI Load. This string must consist of only hexadecimal characters.

pNext
Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

Load parameter

ucType
Should be set to HWMCA_TYPE_OCTETSTRING.

Chapter 3. Console application APIs 33

ulLength
Should be set to the length of the parameter string to be used when performing the SCSI
Load (including the null terminator). This string (including the null terminator) must be
less than or equal to 9 characters.

pData Should be a pointer to a field containing the parameter string to be used when
performing the SCSI Load.

pNext
Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

Worldwide port name

ucType
Should be set to HWMCA_TYPE_OCTETSTRING.

ulLength
Should be set to the length of the worldwide port name string to be used when
performing the SCSI Load (including the null terminator). This string (including the null
terminator) must be less than or equal to 17 characters.

pData Should be a pointer to a field containing the worldwide port name string to be used
when performing the SCSI Load. This string must consist of only hexadecimal characters.

pNext
Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

Logical unit number

ucType
Should be set to HWMCA_TYPE_OCTETSTRING.

ulLength
Should be set to the length of the logical unit number string to be used when performing
the SCSI Load (including the null terminator). This string (including the null terminator)
must be less than or equal to 17 characters.

pData Should be a pointer to a field containing the logical unit number string to be used when
performing the SCSI Load. This string must consist of only hexadecimal characters.

pNext
Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

Disk Partition Identifer

ucType
Should be set to HWMCA_TYPE_INTEGER.

ulLength
Should be set to 2.

pData A pointer to a field containing the boot program selector value, which can be in the range
0 - 30, inclusive.

pNext
Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

Operating system specific load parameters

ucType
Should be set to HWMCA_TYPE_OCTETSTRING.

34 Application Programming Interfaces

ulLength
Should be set to the length of the operating system specific parameters string to be used
when performing the SCSI Load (including the null terminator). This string (including the
null terminator) must be less than or equal to 257 characters.

pData Should be a pointer to a field containing the operating system specific parameters string
to be used when performing the SCSI Load.

pNext
Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

Boot record logical block address

ucType
Should be set to HWMCA_TYPE_OCTETSTRING.

ulLength
Should be set to the length of the boot record logical block address string to be used
when performing the SCSI Load (including the null terminator). This string (including the
null terminator) must be less than or equal to 17 characters.

pData Should be a pointer to a field containing the boot record logical block address string to be
used when performing the SCSI Load. This string must consist of only hexadecimal
characters.

pNext
Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

Force indicator

ucType
Should be set to HWMCA_TYPE_INTEGER.

ulLength
Should be set to 2.

pData A pointer to a field containing the value HWMCA_TRUE for the command to be
performed unconditionally or HWMCA_FALSE for the command to be performed
conditionally based on the state of the target object.

pNext
Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

HWMCA_SCSI_DUMP_COMMAND
No arguments are required, but the following arguments can optionally be specified:

Load address
Hexadecimal address to be used when performing the SCSI Dump. The default will be to
use the Load address last used when a SCSI Dump was performed for the object.

Load parameter
Parameter string to be used when performing the SCSI Dump. The default will be to use
the Load parameter last used when a SCSI Dump was performed for the object.

Worldwide port name
The worldwide port name (WWPN) to be used for the SCSI Dump. The default will be to
use the worldwide port name last used when a SCSI Dump was performed for the object.

Logical unit number
The logical unit number (LUN) to be used for the SCSI Dump. The default will be to use
the logical unit number last used when a SCSI Dump was performed for the object.

Chapter 3. Console application APIs 35

Boot program selector
The boot program selector to be used for the SCSI Dump. The default will be to use the
boot program selector last used when a SCSI Dump was performed for the object.

Operating system specific load parameters
The operating system specific load parameters to be used for the SCSI Dump. The default
will be to use the operating system specific load parameters last used when a SCSI Dump
was performed for the object.

Boot record logical block address
The boot record logical block address to be used for the SCSI Dump. The default will be
to use the boot record logical block address last used when a SCSI Dump was performed
for the object.

Force indicator
An indicator used to request conditional processing of the SCSI Dump command
depending on the state of the target object. The default is to unconditionally perform the
command (that is, FORCE=TRUE) no matter what the state of the target object is.

Any number of arguments can be specified; however, they must be specified in the order shown
by the preceding list. If an argument is not specified, then the default for that argument is used.
In order to specify an argument, such that the default will be used, the HWMCA_DATATYPE_T
structure used to describe the argument should be specified as follows:

ucType
Should be set to HWMCA_TYPE_NULL.

ulLength
Should be set to zero.

pData A pointer value of zero.

pNext
Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

The default for any argument can be overridden by specifying the HWMCA_DATATYPE_T
structure used to describe the argument as follows:

Load address

ucType
Should be set to HWMCA_TYPE_OCTETSTRING.

ulLength
Should be set to the length of the address string to be used when performing the SCSI
Dump (including the null terminator). This string (including the null terminator) must be
less than or equal to 5 characters.

pData Should be a pointer to a field containing the address string to be used when performing
the SCSI Dump. This string must consist of only hexadecimal characters.

pNext
Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

Load parameter

ucType
Should be set to HWMCA_TYPE_OCTETSTRING.

36 Application Programming Interfaces

ulLength
Should be set to the length of the parameter string to be used when performing the SCSI
Dump (including the null terminator). This string (including the null terminator) must be
less than or equal to 9 characters.

pData Should be a pointer to a field containing the parameter string to be used when
performing the SCSI Dump.

pNext
Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

Worldwide port name

ucType
Should be set to HWMCA_TYPE_OCTETSTRING.

ulLength
Should be set to the length of the worldwide port name string to be used when
performing the SCSI Dump (including the null terminator). This string (including the null
terminator) must be less than or equal to 17 characters.

pData Should be a pointer to a field containing the worldwide port name string to be used
when performing the SCSI Dump. This string must consist of only hexadecimal
characters.

pNext
Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

Logical unit number

ucType
Should be set to HWMCA_TYPE_OCTETSTRING.

ulLength
Should be set to the length of the logical unit number string to be used when performing
the SCSI Dump (including the null terminator). This string (including the null terminator)
must be less than or equal to 17 characters.

pData Should be a pointer to a field containing the logical unit number string to be used when
performing the SCSI Dump. This string must consist of only hexadecimal characters.

pNext
Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

Disk Partition Identifer

ucType
Should be set to HWMCA_TYPE_INTEGER.

ulLength
Should be set to 2.

pData A pointer to a field containing the boot program selector value, which can be in the range
0 to 30, inclusive.

pNext
Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

Operating system specific load parameters

Chapter 3. Console application APIs 37

ucType
Should be set to HWMCA_TYPE_OCTETSTRING.

ulLength
Should be set to the length of the operating system specific parameters string to be used
when performing the SCSI Dump (including the null terminator). This string (including
the null terminator) must be less than or equal to 257 characters.

pData Should be a pointer to a field containing the operating system specific parameters string
to be used when performing the SCSI Dump.

pNext
Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

Boot record logical block address

ucType
Should be set to HWMCA_TYPE_OCTETSTRING.

ulLength
Should be set to the length of the boot record logical block address string to be used
when performing the SCSI Dump (including the null terminator). This string (including
the null terminator) must be less than or equal to 17 characters.

pData Should be a pointer to a field containing the boot record logical block address string to be
used when performing the SCSI Dump. This string must consist of only hexadecimal
characters.

pNext
Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

Force indicator

ucType
Should be set to HWMCA_TYPE_INTEGER.

ulLength
Should be set to 2.

pData A pointer to a field containing the value HWMCA_TRUE for the command to be
performed unconditionally or HWMCA_FALSE for the command to be performed
conditionally based on the state of the target object.

pNext
Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

HWMCA_SHUTDOWN_RESTART_COMMAND
This command requires the following argument:

* An indicator of the type of shutdown or restart to be performed.

The fields of the HWMCA_DATATYPE_T structure used to describe this shutdown/restart type
are:

ucType
Should be set to HWMCA_TYPE_INTEGER.

ulLength
Should be set to 2.

pData A pointer to a field containing one of the following values:

38 Application Programming Interfaces

* HWMCA_RESTART_APPLICATION - Used to indicate the Console application is to be
restarted.

Note: For Support Element consoles, this value will implicitly cause the Console to be
restarted.

¢« HWMCA_RESTART CONSOLE - Used to indicate the Console is to be restarted.

« HWMCA_SHUTDOWN_CONSOLE - Used to indicate the Console is to be
shutdown/powered off.

* HWMCA_RESTART_APPLICATION_ALTERNAT E - Used to indicate the Alternate
Support Element Console application is to be restarted. This option is only valid for the
Support Element Console.

* HWMCA_RESTART_CONSOLE_ALTERNATE -Used to indicate the Alternate Support
Element Console is to be restarted. This option is only valid for the Support Element
Console.

Note: This value will implicitly cause the Alternate Console to be restarted.

* HWMCA_SHUTDOWN_CONSOLE_ALTERNATE - Used to indicate the Alternate
Support Element Console is to be shutdown/powered off. This option is only valid for
the Support Element Console.

pNext Should be set to NULL, since this command only accepts one argument.
HWMCA_ACTIVATE_OOCOD_COMMAND
This command requires the following argument:
* The order number of the On/Off Capacity on Demand (On/Off CoD) record to be activated.
The fields of the HWMCA_DATATYPE_T structure used to describe the order number are:

ucType
Should be set to HWMCA_TYPE_OCTETSTRING.

ulLength
Should be set to length of the order number string (including the null terminator).

pData A pointer to the string itself.
pNext Should be set to NULL, since this command only accepts one argument.

HWMCA_UNDO_OOCOD_COMMAND
No arguments are accepted or required.

HWMCA_ADD_CAPACITY_COMMAND
This command, which is used to add temporary capacity to a Defined CPC object, requires the
following argument:

* An XML fragment describing the temporary capacity to be added. This XML is used to
describe:

— the identifier of the capacity record to be used,
— the software model to be used for the capacity addition (optional),
— the delta processor information to be used for the capacity addition (optional),

— an indicator for whether the capacity addition is a priority request, (optional, default false),
and

— an indicator for whether the additional capacity is to be added as test or real.

Note: Refer to [Appendix F, “XML descriptions,” on page 219 for a detailed description of this
XML data.

The fields of the HWMCA_DATATYPE_T structure used to describe the capacity information
XML are:

Chapter 3. Console application APIs 39

ucType
Should be set to HWMCA_TYPE_OCTETSTRING.

ulLength
Should be set to length of the capacity information XML string.

pData A pointer to a the capacity information XML string.
pNext Should be set to NULL, since this command only accepts one argument.

HWMCA_REMOVE_CAPACITY_COMMAND
This command, which is used to remove temporary capacity from a Defined CPC object, requires
the following argument:

* An XML fragment describing the temporary capacity to be removed. This XML is used to
describe:

— the identifier of the capacity record to be used,
— the software model to be used for the capacity removal (optional), and
— the delta processor information to be used for the capacity removal (optional).

Note: Refer to|Appendix F, “XML descriptions,” on page 219 for a detailed description of this
XML data.

The fields of the HWMCA_DATATYPE_T structure used to describe the capacity information
XML are:

ucType
Should be set to HWMCA_TYPE_OCTETSTRING.

ulLength
Should be set to length of the capacity information XML string.

pData A pointer to a the capacity information XML string.
pNext Should be set to NULL, since this command only accepts one argument.

HWMCA_SYSPLEX_TIME_SWAP_CTS_COMMAND
In a configured STP-only Coordinated Timing Network (CTN), one CPC has the role of Current
Time Server (CTS). If the CIN has both a Preferred Time Server and a Backup Time Server
configured, eith